Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334638

RESUMO

NKG2D is an activating receptor of natural killer cells that recognizes stress-induced ligands (NKG2DL) expressed by many tumor cells. Nevertheless, NKG2DL downregulation or shedding can still allow cancer cells to evade immune surveillance. Here, we used lentiviral gene transfer to engineer clinically usable NK-92 cells with a chimeric antigen receptor (NKAR) which contains the extracellular domain of NKG2D for target recognition, or an NKAR, together with the IL-15 superagonist RD-IL15, and combined these effector cells with recombinant NKG2D-interacting bispecific engagers that simultaneously recognize the tumor-associated antigens epidermal growth factor receptor (EGFR) or ErbB2 (HER2). Applied individually, in in vitro cell-killing assays, these NKAB-EGFR and NKAB-ErbB2 antibodies specifically redirected NKAR-NK-92 and NKAR_RD-IL15-NK-92 cells to glioblastoma and other cancer cells with elevated EGFR or ErbB2 levels. However, in mixed glioblastoma cell cultures, used as a model for heterogeneous target antigen expression, NKAR-NK cells only lysed the EGFR- or ErbB2-expressing subpopulations in the presence of one of the NKAB molecules. This was circumvented by applying NKAB-EGFR and NKAB-ErbB2 together, resulting in effective antitumor activity similar to that against glioblastoma cells expressing both target antigens. Our results demonstrate that combining NK cells carrying an activating NKAR receptor with bispecific NKAB antibodies allows for flexible targeting, which can enhance tumor-antigen-specific cytotoxicity and prevent immune escape.


Assuntos
Anticorpos Biespecíficos , Glioblastoma , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Interleucina-15/metabolismo , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Anticorpos Biespecíficos/farmacologia , Receptores ErbB/metabolismo
2.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686586

RESUMO

In contrast to T lymphocytes, natural killer (NK) cells do not require prior sensitization but are rapidly activated upon encountering virally infected or neoplastic cells. In addition, NK cells can be safely applied in an allogeneic setting, making them important effector cells for the development of off-the-shelf therapeutics for adoptive cancer immunotherapy. To further enhance their therapeutic potential, here, we engineered continuously expanding NK-92 cells as a clinically relevant model to express a humanized second-generation chimeric antigen receptor (CAR) with a composite CD28-CD3ζ signaling domain (hu14.18.28.z) that targets the disialoganglioside GD2, which is expressed at high levels by neuroblastoma cells and other tumors of neuroectodermal origin. In a separate approach, we fused an IL-15 superagonist (RD-IL15) to the GD2-CAR via a P2A processing site. Lentivirally transduced NK-92/hu14.18.28.z and NK-92/hu14.18.28.z_RD-IL15 cells both displayed high and stable CAR surface expression and specific cytotoxicity toward GD2-positive tumor cells. GD2-CAR NK cells carrying the RD-IL15 construct in addition expressed the IL-15 superagonist, resulting in self-enrichment and targeted cell killing in the absence of exogenous IL-2. Furthermore, co-culture with RD-IL15-secreting GD2-CAR NK cells markedly enhanced proliferation and cytotoxicity of bystander immune cells in a paracrine manner. Our results demonstrate that GD2-CAR NK cells co-expressing the IL-15 superagonist mediate potent direct and indirect antitumor effects, suggesting this strategy as a promising approach for the further development of functionally enhanced cellular therapeutics.

3.
Cancer Immunol Immunother ; 72(9): 2905-2918, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36688995

RESUMO

Chimeric antigen receptor (CAR)-engineered immune effector cells constitute a promising approach for adoptive cancer immunotherapy. Nevertheless, on-target/off-tumor toxicity and immune escape due to antigen loss represent considerable challenges. These may be overcome by adaptor CARs that are selectively triggered by bispecific molecules that crosslink the CAR with a tumor-associated surface antigen. Here, we generated NK cells carrying a first- or second-generation universal CAR (UniCAR) and redirected them to tumor cells with so-called target modules (TMs) which harbor an ErbB2 (HER2)-specific antibody domain for target cell binding and the E5B9 peptide recognized by the UniCAR. To investigate differential effects of the protein design on activity, we developed homodimeric TMs with one, two or three E5B9 peptides per monomer, and binding domains either directly linked or separated by an IgG4 Fc domain. The adaptor molecules were expressed as secreted proteins in Expi293F cells, purified from culture supernatants and their bispecific binding to UniCAR and ErbB2 was confirmed by flow cytometry. In cell killing experiments, all tested TMs redirected NK cell cytotoxicity selectively to ErbB2-positive tumor cells. Nevertheless, we found considerable differences in the extent of specific cell killing depending on TM design and CAR composition, with adaptor proteins carrying two or three E5B9 epitopes being more effective when combined with NK cells expressing the first-generation UniCAR, while the second-generation UniCAR was more active in the presence of TMs with one E5B9 sequence. These results may have important implications for the further development of optimized UniCAR and target module combinations for cancer immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Células Matadoras Naturais , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias , Linhagem Celular Tumoral , Receptor ErbB-2
4.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599028

RESUMO

BACKGROUND: Natural killer group 2D (NKG2D) is an activating receptor of natural killer (NK) cells and other lymphocytes that mediates lysis of malignant cells through recognition of stress-induced ligands such as MICA and MICB. Such ligands are broadly expressed by cancer cells of various origins and serve as targets for adoptive immunotherapy with effector cells endogenously expressing NKG2D or carrying an NKG2D-based chimeric antigen receptor (CAR). However, shedding or downregulation of NKG2D ligands (NKG2DL) can prevent NKG2D activation, resulting in escape of cancer cells from NKG2D-dependent immune surveillance. METHODS: To enable tumor-specific targeting of NKG2D-expressing effector cells independent of membrane-anchored NKG2DLs, we generated a homodimeric recombinant antibody which harbors an N-terminal single-chain fragment variable (scFv) antibody domain for binding to NKG2D, linked via a human IgG4 Fc region to a second C-terminal scFv antibody domain for recognition of the tumor-associated antigen ErbB2 (HER2). The ability of this molecule, termed NKAB-ErbB2, to redirect NKG2D-expressing effector cells to ErbB2-positive tumor cells of different origins was investigated using peripheral blood mononuclear cells, ex vivo expanded NK cells, and NK and T cells engineered with an NKG2D-based chimeric receptor. RESULTS: On its own, bispecific NKAB-ErbB2 increased lysis of ErbB2-positive breast carcinoma cells by peripheral blood-derived NK cells endogenously expressing NKG2D more effectively than an ErbB2-specific IgG1 mini-antibody able to induce antibody-dependent cell-mediated cytotoxicity via activation of CD16. Furthermore, NKAB-ErbB2 synergized with NK-92 cells or primary T cells engineered to express an NKG2D-CD3ζ chimeric antigen receptor (NKAR), leading to targeted cell killing and greatly enhanced antitumor activity, which remained unaffected by soluble MICA known as an inhibitor of NKG2D-mediated natural cytotoxicity. In an immunocompetent mouse glioblastoma model mimicking low or absent NKG2DL expression, the combination of NKAR-NK-92 cells and NKAB-ErbB2 effectively suppressed outgrowth of ErbB2-positive tumors, resulting in treatment-induced endogenous antitumor immunity and cures in the majority of animals. CONCLUSIONS: Our results demonstrate that combining an NKAB antibody with effector cells expressing an activating NKAR receptor represents a powerful and versatile approach to simultaneously enhance tumor antigen-specific as well as NKG2D-CAR and natural NKG2D-mediated cytotoxicity, which may be particularly useful to target tumors with heterogeneous target antigen expression.


Assuntos
Anticorpos Biespecíficos/metabolismo , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/genética , Receptores de Antígenos Quiméricos/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias/patologia
5.
PLoS One ; 12(7): e0179405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686620

RESUMO

Yeast large ribosomal subunit (LSU) precursors are subject to substantial changes in protein composition during their maturation due to coordinated transient interactions with a large number of ribosome biogenesis factors and due to the assembly of ribosomal proteins. These compositional changes go along with stepwise processing of LSU rRNA precursors and with specific rRNA folding events, as revealed by recent cryo-electron microscopy analyses of late nuclear and cytoplasmic LSU precursors. Here we aimed to analyze changes in the spatial rRNA surrounding of selected ribosomal proteins during yeast LSU maturation. For this we combined a recently developed tethered tertiary structure probing approach with both targeted and high throughput readout strategies. Several structural features of late LSU precursors were faithfully detected by this procedure. In addition, the obtained data let us suggest that early rRNA precursor processing events are accompanied by a global transition from a flexible to a spatially restricted rRNA conformation. For intermediate LSU precursors a number of structural hallmarks could be addressed which include the fold of the internal transcribed spacer between 5.8S rRNA and 25S rRNA, the orientation of the central protuberance and the spatial organization of the interface between LSU rRNA domains I and III.


Assuntos
RNA Ribossômico 5,8S/ultraestrutura , RNA Ribossômico/ultraestrutura , Subunidades Ribossômicas Maiores/ultraestrutura , Ribossomos/genética , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , Biogênese de Organelas , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/genética , Ribossomos/química , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética
6.
PLoS One ; 12(4): e0176204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445535

RESUMO

BACKGROUND: Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. It is highly adapted to intracellular replication and manipulates host cell functions like vesicle trafficking and mRNA translation to its own advantage. However, it is still unknown to what extent microRNAs (miRNAs) are involved in the Legionella-host cell interaction. METHODS: WT and MyD88-/- murine bone marrow-derived macrophages (BMM) were infected with L. pneumophila, the transcriptome was analyzed by high throughput qPCR array (microRNAs) and conventional qPCR (mRNAs), and mRNA-miRNA interaction was validated by luciferase assays with 3´-UTR mutations and western blot. RESULTS: L. pneumophila infection caused a pro-inflammatory reaction and significant miRNA changes in murine macrophages. In MyD88-/- cells, induction of inflammatory markers, such as Ccxl1/Kc, Il6 and miR-146a-5p was reduced. Induction of miR-125a-3p was completely abrogated in MyD88-/- cells. Target prediction analyses revealed N-terminal asparagine amidase 1 (NTAN1), a factor from the n-end rule pathway, to be a putative target of miR-125a-3p. This interaction could be confirmed by luciferase assay and western blot. CONCLUSION: Taken together, we characterized the miRNA regulation in L. pneumophila infection with regard to MyD88 signaling and identified NTAN1 as a target of miR-125a-3p. This finding unravels a yet unknown feature of Legionella-host cell interaction, potentially relevant for new treatment options.


Assuntos
Amidoidrolases/metabolismo , Legionella pneumophila/fisiologia , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Regiões 3' não Traduzidas , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Animais , Sequência de Bases , Quimiocina CXCL1/análise , Genótipo , Interleucina-6/análise , Interleucina-6/genética , Interleucina-6/metabolismo , Doença dos Legionários/genética , Doença dos Legionários/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/deficiência , Células RAW 264.7 , Alinhamento de Sequência , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...