Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Nano ; 17(13): 12774-12787, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37354449

RESUMO

Nanoparticle superlattices produced with controllable interparticle gap distances down to the subnanometer range are of superior significance for applications in electronic and plasmonic devices as well as in optical metasurfaces. In this work, a method to fabricate large-area (∼1 cm2) gold nanoparticle (GNP) superlattices with a typical size of single domains at several micrometers and high-density nanogaps of tunable distances (from 2.3 to 0.1 nm) as well as variable constituents (from organothiols to inorganic S2-) is demonstrated. Our approach is based on the combination of interfacial nanoparticle self-assembly, subphase exchange, and free-floating ligand exchange. Electrical transport measurements on our GNP superlattices reveal variations in the nanogap conductance of more than 6 orders of magnitude. Meanwhile, nanoscopic modifications in the surface potential landscape of active GNP devices have been observed following engineered nanogaps. In situ optical reflectance measurements during free-floating ligand exchange show a gradual enhancement of plasmonic capacitive coupling with a diminishing average interparticle gap distance down to 0.1 nm, as continuously red-shifted localized surface plasmon resonances with increasing intensity have been observed. Optical metasurfaces consisting of such GNP superlattices exhibit tunable effective refractive index over a broad wavelength range. Maximal real part of the effective refractive index, nmax, reaching 5.4 is obtained as a result of the extreme field confinement in the high-density subnanometer plasmonic gaps.

2.
Langmuir ; 38(48): 14850-14856, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36440917

RESUMO

The assembly of nanomaterials into thin films is an important area in the nanofabrication of novel devices. The monodispersity of nanoparticles plays an essential role in the resulting quality of the assembled mono- and multilayers. Larger polydispersity leads to smaller lateral correlation lengths and smaller domains of aligned nanoparticles, thus resulting in more point and line defects. Perfectly monodisperse nanoparticles should therefore minimize the number of defects in the assembled films. Despite tremendous progress in reducing the polydispersity of nanoparticles, there has been limited research on the assembly of thin films out of perfectly monodisperse nanoclusters. Here, we show a formation of Langmuir films using perfectly monodisperse gold nanoclusters with composition Au32(nBu3P)12Cl8 exhibiting a diameter of 1.8 nm. Using both in situ and ex situ small-angle X-ray scattering, we show that the monolayer formed on a Langmuir-Blodgett trough exhibits long-range order. Moreover, after compressing the monolayer, we found that the stress accumulated prior to the monolayer collapse triggers a transition to a short-range order not previously reported. If such monolayer is compressed further, the second layer is not formed as in the case of standard nanoparticles. Instead, a growth of islands by an odd number of layers is observed, leading to a thin film with a structure consisting of two different orientations of the hexagonal lattice. Such anomalous behavior may have implications for the possibilities of thin-film formation.

3.
Ultramicroscopy ; 238: 113547, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35545000

RESUMO

Electron spectroscopy proves to be a handy tool in material science. Combination of electron spectroscopy and scanning probe microscopy is possible through Scanning Field Emission Microscopy (SFEM), where a metallic probe positioned close to the surface is used as an electron source. However, using this not too much technologically demanding technique, it looks like the compromise between the lateral resolution and spectroscopic clarity must be considered. Here, we demonstrate, using experimental and simulation data, that the spectroscopic information can be understood without the need to grossly deteriorate the potential spatial resolution of the microscope. We prepared a three-section sample with clean W(110), sub-monolayer Cs on W(110) and monolayer of Cs on W(110) on which electron energy loss spectra are obtained via Scanning Probe Energy Loss Spectroscopy (SPELS) measurements. To explain the detected spectra a new model describing SPELS measurements in a SFEM is developed which aids to uncover the origin of spectral features typically detected during experiments. Experimental and simulation data are in a mutual agreement and observed spectral features on different surfaces could be explained. This novel understanding of SPELS can solve the main issue previously related to this technique, and good spatial resolution can be accompanied by the understanding of the measured spectra.

4.
Ecotoxicol Environ Saf ; 228: 112973, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794023

RESUMO

Wastewater contains a wealth of information about the inhabitants of cities. Wastewater-based epidemiology (WBE) has become an effective tool for monitoring public health by analyzing various biomarkers (e.g., chemicals and microorganisms) in wastewater. This way, the estimation of pharmaceuticals' consumption behavior and/or illicit drugs can be calculated. However, monitoring consumption alone is not the only option. If we consider wastewater as a statistical representation of the population's health, medical information can be derived. In this work, we used data from 15 different wastewater treatment plants in Slovak Republic to explore correlations between the use of typical pharmaceuticals and illicit drugs. The analysis was based on the wastewater monitoring data from four years (2016-2019), and 68 different compounds were taken into account. One of the strongest correlations found was between Antihyperlipidemics and Antihypertensives, with Pearson's correlation coefficient of 0.82. This type of analysis within the WBE represents a new potential as an additional source of information for the pharmaceutical, medical and government sectors in assessing health risk factors in the population. Such an evaluation method has even a great potential for artificial intelligence and machine learning for calculating health risk factors together with other sources of data.

5.
Photodiagnosis Photodyn Ther ; 35: 102455, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311091

RESUMO

Inhabitation of various types of bacteria on different surfaces causes vital health problems worldwide. In this work, a wound dressing defeating bacterial infection had been fabricated. The antibacterial effect of polycaprolactone and hydrophobic carbon quantum dots (hCQDs) based nanocomposite has been presented. The nanocomposite was fabricated both via solvent casting and electrospinning method. Nanocomposites with and without hCQDs had been investigated. A detailed study on their morphology and surface properties were performed by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. Prepared nanocomposites had been evaluated by the contact angle, UV-Vis spectroscopy, electron paramagnetic resonance spectroscopy, and antibacterial activity. It was found that nanocomposites were able to produce singlet oxygen upon blue light irradiation at 470 nm, and they were effective in the eradication of Gram positive (Staphylococcus aureus, Listeria monocytogenes) and Gram negative (Escherichia coli, Klebsiella pneumoniae) bacteria.


Assuntos
Nanocompostos , Fotoquimioterapia , Pontos Quânticos , Antibacterianos/farmacologia , Carbono , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Poliésteres , Solventes
6.
Colloids Surf B Biointerfaces ; 197: 111425, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099149

RESUMO

Bacillus subtilis spore coat is a bacterial proteinaceous structure with amazing characteristics of self-organization, unique resiliency, toughness and flexibility in the same time. The spore coat represents a complex multilayered protein structure which is composed of over 80 coat proteins. Some of these proteins form two dimensional crystal structures who's low resolution ternary structure as was determined by electron microscopy. However, there are no 3D structure of these proteins known, due to a problem of preparing 3D crystals which could be analyzed by synchrotron X-ray sources. In the present study, Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) was applied to investigate a diffraction pattern of CotY 2D crystals formed on Langmuir monolayer films. We observed two distinct diffraction rings and their position corresponds to a structure with the lattice spacing of 10.6 Å and 5.0 Å, respectively. Obtaining diffractions of 2D crystals pave the way to determination of 3D structure of coat proteins by using strong X-ray sources.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Proteínas de Bactérias , Parede Celular , Microscopia Eletrônica
7.
Nanotechnology ; 32(4): 045708, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33140739

RESUMO

Gel filtration is a versatile technique employed for biological molecules and nanoparticles, offering their reproducible classification based on size and shape. Colloidal nanoparticles are of significant interest in biomedical applications due to a large number of solution-based bioconjugation procedures. Nevertheless, the inherent polydispersity of the nanoparticles produced by various techniques necessitates the employment of high yield separation and purification techniques. Here we demonstrate the employment of gel filtration on non-stoichiometric plasmonic MoO x nanoparticles, prepared by an oxidation process during liquid-phase exfoliation of few-layer MoS2 nanosheets. This resulted in the separation of two types of MoO x particles, in the form of two different chromatographic fractions. They showed different sizes, morphological and optical properties. The fraction containing smaller particles with diameters of 1-4 nm, exhibited an increased absorbance peak in the near IR region and responded with a significant temperature increase to laser irradiation at the wavelength close to the maximal absorption. The fraction with the larger particles from 3 up to 10 nm, showed weak photoluminescence and a preferred orientation upon the deposition on a planar substrate. However, it had no absorbance in the near IR compared to the former fraction. According to our knowledge, this is the first time that the gel filtration was applied to the separation of molybdenum oxide nanomaterials. This step ensured the isolation of plasmonic MoO x nanoparticles suitable for further bioconjugation and target photothermal treatment.

8.
J Photochem Photobiol B ; 211: 112012, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32919175

RESUMO

Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Fármacos Fotossensibilizantes/química , Materiais Inteligentes/química , Animais , Biofilmes , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/química , Staphylococcus aureus , Propriedades de Superfície
9.
Adv Colloid Interface Sci ; 283: 102239, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32854017

RESUMO

A large number of low-dimensional nanomaterials having different shapes and being dispersible in solvents open a fundamental question if there is a universal deposition technique for the monolayer formation. A monolayer formation of various nanomaterials at the air-water interface, also known as a Langmuir film, is a well-established technique even for the large group of the recently developed low-dimensional nanomaterials. In this review, we cover the monolayer formation of the zero-dimensional, one-dimensional and two-dimensional nanomaterials. Thanks to the formation of a Langmuir layer at the thermodynamic equilibrium, by using a suitable nanomaterial dispersion and subphase, the monolayers can be formed from all kinds of materials, ranging from the graphene oxide to the semiconducting quantum dots. In this review, we will discuss the basic requirements for the successful formation of monolayers and summarize the recent scientific advances in the field of Langmuir films.

10.
Nanomedicine ; 30: 102280, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32771421

RESUMO

Two-dimensional materials as graphene oxide (GO) are able to accommodate labels as well as toxins for diagnostics and therapy, respectively. The transmembrane protein carbonic anhydrase (CA IX) is one of the molecules selectively expressed by tumor cells. Here, we demonstrate bioconjugation of GO to biotinylated M75 antibody highly selective towards CA IX. Based on a model system, binding between the bioconjugated GO-M75 and Madin-Darby Canine Kidney (MDCK) cells was evaluated. As proven by fluorescence-activated cell sorting, higher intake was observed for GO-M75 towards MDCK cells ectopically expressing CA IX protein on their surface when compared to control MDCK. In particular, we were able to localize GO nanocarrier crossing the membrane during endocytosis, thanks to the optical cross-sectioning of living cells in real-time employed the label-free confocal Raman microscopy. The increased affinity of the prepared GO-M75 molecular complexes validates the use of two-dimensional materials for future strategies of targeted cancer treatment.


Assuntos
Portadores de Fármacos , Grafite/administração & dosagem , Terapia de Alvo Molecular , Nanopartículas , Análise Espectral Raman/métodos , Animais , Linhagem Celular , Cães , Citometria de Fluxo , Microscopia de Força Atômica , Microscopia Confocal
11.
Langmuir ; 36(16): 4540-4547, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32298112

RESUMO

A widely applicable method for aligning 1D materials, and in particular carbon nanotubes (CNTs), independent of their preparation would be very useful as the growth methods for these materials are substance-specific. Langmuir-Schaefer (LS) deposition could be such an approach for alignment, as it aligns a large number of 1D materials independently of the desired substrate. However, the mechanism and required conditions for alignment of 1D nanomaterials in a Langmuir trough are still unclear. Here we show, relying on numerical simulations of the Langmuir film compression, that the LS method is a powerful tool to achieve maximal alignment of 1D material in a controllable manner. In particular, 1D materials terminated with a suitable surfactant can align only if the velocity induced by the attraction between individual 1D entities is low enough relative to the flow speed. To validate this model, we achieved an efficient LS alignment of single-walled carbon nanotubes covered with a suitable surfactant relying on the numerical simulations. In situ polarized Raman microspectroscopy during the compression of Langmuir film revealed good quantitative agreement between the numerical simulations and the experiment. This suggests the applicability of the LS technique as a versatile method for the controlled alignment of 1D materials.

12.
Biomater Sci ; 8(7): 1973-1980, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32065173

RESUMO

We evaluate the application of surfactant-free liquid-phase exfoliated MoS2 nanosheets as a nanoplatform for a cancer detection and treatment system equipped with an antibody-antigen based recognition element. Employing antigen-antibody binding, we increased the probability of the endocytosis of MoS2 nanosheets into CAIX expressing cells by 30%. The nanosheets are functionalized with a specific antibody M75, which forms an antigen-antibody complex with CAIX. The bioconjugation of MoS2 nanosheets involves biocompatible components with low cytotoxicity, verified in the tested cell lines by fluorescence-based cell viability assay. The cellular internalization is quantified by flow cytometry, while the internalization is confirmed by label-free confocal Raman imaging. Raman measurements show increased lysosomal activity in the proximity of the internalized nanoplatforms.


Assuntos
Anticorpos Monoclonais/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Dissulfetos/química , Molibdênio/química , Neoplasias/metabolismo , Anticorpos Monoclonais/química , Antígenos de Neoplasias , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Nanoestruturas
13.
Phys Chem Chem Phys ; 22(5): 3097-3104, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967129

RESUMO

Small π-conjugated organic molecules have attracted substantial attention in the past decade as they are considered as candidates for future organic-based (opto-)electronic applications. The molecular arrangement in the organic layer is one of the crucial parameters that determine the efficiency of a given device. The desired orientation of the molecules is achieved by a proper choice of the underlying substrate and growth conditions. Typically, one underlying material supports only one inherent molecular orientation at its interface. Here, we report on two different orientations of diindenoperylene (DIP) molecules on the same underlayer, i.e. on a few-layer MoS2 substrate. We show that DIP molecules adopt a lying-down orientation when deposited on few-layer MoS2 with horizontally oriented layers. In contrast, for vertically aligned MoS2 layers, DIP molecules are arranged in a standing-up manner. Employing in situ and real-time grazing-incidence wide-angle X-ray scattering (GIWAXS), we monitored the stress evolution within the thin DIP layer from the early stages of the growth, revealing different substrate-induced phases for the two molecular orientations. Our study opens up new possibilities for the next-generation of flexible electronics, which might benefit from the combination of MoS2 layers with unique optical and electronic properties and an extensive reservoir of small organic molecules.

14.
Langmuir ; 35(30): 9802-9808, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31282679

RESUMO

Few-layer MoS2 films stay at the forefront of current research of two-dimensional materials. At present, continuous MoS2 films are prepared by chemical vapor deposition (CVD) techniques. Herein, we present a cost-effective fabrication of the large-area spatially uniform films of few-layer MoS2 flakes using a modified Langmuir-Schaefer technique. The compression of the liquid-phase exfoliated MoS2 flakes on the water subphase was used to form a continuous layer, which was subsequently transferred onto a submerged substrate by removing the subphase. After vacuum annealing, the electrical sheet resistance dropped to a level of 10 kΩ/sq, being highly competitive with that of CVD-deposited MoS2 nanosheet films. In addition, a consistent fabrication protocol of the large-area conductive MoS2 films was established. The morphology and electrical properties predetermine these films to advanced detecting, sensing, and catalytic applications. A large number of experimental techniques were used to characterize the exfoliated few-layer MoS2 flakes and to elucidate the formation of the few-layer MoS2 Langmuir film.

15.
Cancers (Basel) ; 11(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146494

RESUMO

Diagnosis of oncological diseases remains at the forefront of current medical research. Carbonic Anhydrase IX (CA IX) is a cell surface hypoxia-inducible enzyme functionally involved in adaptation to acidosis that is expressed in aggressive tumors; hence, it can be used as a tumor biomarker. Herein, we propose a nanoscale graphene oxide (GO) platform functionalized with magnetic nanoparticles and a monoclonal antibody specific to the CA IX marker. The GO platforms were prepared by a modified Hummers and Offeman method from exfoliated graphite after several centrifugation and ultrasonication cycles. The magnetic nanoparticles were prepared by a chemical precipitation method and subsequently modified. Basic characterization of GO, such as the degree of oxidation, nanoparticle size and exfoliation, were determined by physical and chemical analysis, including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM). In addition, the size and properties of the poly-L-lysine-modified magnetic nanoparticles were characterized. The antibody specific to CA IX was linked via an amidic bond to the poly-L-lysine modified magnetic nanoparticles, which were conjugated to GO platform again via an amidic bond. The prepared GO-based platform with magnetic nanoparticles combined with a biosensing antibody element was used for a hypoxic cancer cell targeting study based on immunofluorescence.

16.
Phys Chem Chem Phys ; 21(23): 12396-12405, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31140503

RESUMO

It is generally accepted that liquid-phase exfoliation (LPE) enables large-scale production of few-layer MoS2 flakes. In our work, we studied in detail few-layer MoS2 oxidation in the course of standard LPE in a water/ethanol solution. We demonstrate that an increase of the initial MoS2 concentration above a certain threshold triggers a pronounced oxidation and the exfoliation process starts to produce MoOx nanoparticles. A subsequent decrease of the water pH along with an increased content of SO42- suggests an oxidation scenario of few-layer MoS2 oxidation towards MoOx nanoparticles. Moreover, the lowered pH leads to agglomeration and sedimentation of the few-layer MoS2 flakes, which significantly lowers their production yield. We employed a large number of physico-chemical techniques to study the MoS2-to-MoOx transformation and found a threshold value of 10 mg ml-1 of the initial MoS2 concentration to trigger this transformation.

17.
Analyst ; 143(15): 3686-3692, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-29978167

RESUMO

Graphene oxide (GO), a partially oxidized two-dimensional allotrope of carbon, is an attractive nanocarrier for cancer diagnostics and therapy. The nanometer-sized GO is known to permeate cell membranes. Herein we studied the cellular uptake pathways of GO nanoflakes by cancer and non-cancerous cell lines. By employing confocal Raman imaging, we were able to track the GO cellular uptake in living cells (C33 and MDCK) without any additional fluorescent or plasmonic labels. This specific progress in label-free Raman imaging of GO facilitates the monitoring of nanoflakes at the cellular level.


Assuntos
Grafite/metabolismo , Microscopia Confocal , Nanopartículas/metabolismo , Análise Espectral Raman , Animais , Linhagem Celular Tumoral , Cães , Humanos , Células Madin Darby de Rim Canino , Oxirredução , Óxidos
18.
Nanotechnology ; 28(14): 145601, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28206980

RESUMO

We report on an ultrafast plasma-based graphene oxide reduction method superior to conventional vacuum thermal annealing and/or chemical reduction. The method is based on the effect of non-equilibrium atmospheric-pressure plasma generated by the diffuse coplanar surface barrier discharge in proximity of the graphene oxide layer. As the reduction time is in the order of seconds, the presented method is applicable to the large-scale production of reduced graphene oxide layers. The short reduction times are achieved by the high-volume power density of plasma, which is of the order of 100 W cm-3. Monolayers of graphene oxide on silicon substrate were prepared by a modified Langmuir-Schaefer method and the efficient and rapid reduction by methane and/or hydrogen plasma was demonstrated. The best results were obtained for the graphene oxide reduction in hydrogen plasma, as verified by x-ray photoelectron spectroscopy and Raman spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...