Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Bone ; 34(2): 320-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14962810

RESUMO

Glucocorticoids have marked effects on bone metabolism, and continued exposure of skeletal tissue to excessive amounts of these steroids results in osteoporosis. Therefore, in the present proteomic study, we characterized the potential effects of glucocorticoids on protein expression in human osteoblastic cells. Using two-dimensional gel electrophoresis and mass spectrometry, we identified an increased expression of glutamine synthetase (GS) in dexamethasone (Dex)-treated human MG-63 osteosarcoma cells. GS is an enzyme catalyzing the conversion of glutamate and ammonia to glutamine. Intracellular and extracellular glutamate levels may be important in cell signalling mediated by glutamate transporters and receptors which have recently been found in bone cells. The induction of GS protein by Dex was accompanied by an increase in mRNA level and enzyme activity. Dex induction of GS was also mediated by glucocorticoid receptors (GRs) because it was blocked by the GR antagonist RU-38486. In addition, Dex induction of GS expression was partially blocked by cyclohexamide indicating that it at least partly required new protein synthesis. GS induction by Dex was not associated with apoptosis as determined by Bax/Bcl-2 ratio and DNA staining. In addition to MG-63 cells, Dex induction of GS was also observed in human G-292 osteosarcoma cells as well as conditionally immortalized human preosteoblastic (HOB-03-C5) and mature osteoblastic (HOB-03-CE6) cells. However, in two other human osteosarcoma cell lines, SaOS-2 and U2-OS, GS expression was not affected by Dex. This observation may be explained by the lower levels of GR protein in these cells. In summary, this is the first report of the regulation of GS expression by glucocorticoids in bone cells. The role of GS in bone cell metabolism and glucocorticoid action on the skeleton is not yet known, but as a modulator of intracellular glutamate and glutamine levels, it may have an important role in these processes.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glutamato-Amônia Ligase/biossíntese , Osteoblastos/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Eletroforese em Gel Bidimensional , Glutamato-Amônia Ligase/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Humanos , Immunoblotting , Espectrometria de Massas , Osteoblastos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Cell Biochem ; 89(2): 389-400, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12704802

RESUMO

Osteoblast differentiation is a key aspect of bone formation and remodeling. To further our understanding of the differentiation process, we have developed a collection of conditionally immortalized adult human osteoblast cell lines representing discrete stages of differentiation. To evaluate changes in gene expression associated with differentiation, polyA((+)) RNA from pre-osteoblasts, early and late osteoblasts, and pre-osteocytes was subjected to gene chip analysis using the Affymetrix Hu6800 chip in conjunction with an Affymetrix custom chip enriched in bone and cartilage cDNAs. Overall, the expression of 47 genes was found to change threefold or more on both chips between the pre-osteoblastic and pre-osteocytic stages of differentiation. Many of the observed differences, including down-regulation of collagen type I and collagen-processing enzymes, reflect expected patterns and support the relevance of our results. Other changes have not been reported and offer new insight into the osteoblast differentiation process. Thus, we observed regulation of factors controlling cell cycle and proliferation, reflecting decreased proliferation, and increased apoptosis in pre-osteocytic cells. Elements maintaining the cytoskeleton, extracellular matrix, and cell-cell adhesion also changed with differentiation reflecting profound alterations in cell architecture associated with the differentiation process. We also saw dramatic down-regulation of several components of complement and other immune response factors that may be involved in recruitment and differentiation of osteoclasts. The decrease in this group of genes may provide a mechanism for controlling bone remodeling of newly formed bone. Our screen also identified several signaling proteins that may control osteoblast differentiation. These include an orphan nuclear receptor DAX1 and a small ras-related GTPase associated with diabetes, both of which increased with increasing differentiation, as well as a high mobility group-box transcription factor, SOX4, that was down-regulated during differentiation. In summary, our study provides a comprehensive transcriptional profile of human osteoblast differentiation and identifies several genes of potential importance in controlling differentiation of osteoblasts.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Osteoblastos/metabolismo , Transcrição Gênica , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Osteoblastos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA