Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653080

RESUMO

Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Sistema y+L de Transporte de Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Citrulina/uso terapêutico , Modelos Animais de Doenças , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Mucosa Intestinal/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/patologia
2.
J Am Soc Nephrol ; 29(6): 1624-1635, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29610403

RESUMO

Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivoMethods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Reabsorção Renal , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos Neutros/urina , Animais , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Túbulos Renais/fisiologia , Masculino , Camundongos Knockout
3.
Elife ; 72018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29355479

RESUMO

Age-related hearing loss (ARHL) is the most common sensory deficit in the elderly. The disease has a multifactorial etiology with both environmental and genetic factors involved being largely unknown. SLC7A8/SLC3A2 heterodimer is a neutral amino acid exchanger. Here, we demonstrated that SLC7A8 is expressed in the mouse inner ear and that its ablation resulted in ARHL, due to the damage of different cochlear structures. These findings make SLC7A8 transporter a strong candidate for ARHL in humans. Thus, a screening of a cohort of ARHL patients and controls was carried out revealing several variants in SLC7A8, whose role was further investigated by in vitro functional studies. Significant decreases in SLC7A8 transport activity was detected for patient's variants (p.Val302Ile, p.Arg418His, p.Thr402Met and p.Val460Glu) further supporting a causative role for SLC7A8 in ARHL. Moreover, our preliminary data suggest that a relevant proportion of ARHL cases could be explained by SLC7A8 mutations.


Assuntos
Mutação , Presbiacusia/genética , Presbiacusia/patologia , Sistema y+ de Transporte de Aminoácidos/deficiência , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Cadeias Leves da Proteína-1 Reguladora de Fusão/deficiência , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Deleção de Genes , Testes Genéticos , Humanos , Camundongos
4.
Proc Natl Acad Sci U S A ; 113(3): 775-80, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26739563

RESUMO

Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b(0,+)AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b(0,+)AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Cistinúria/metabolismo , Túbulos Renais Proximais/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Animais , Anticorpos/metabolismo , Western Blotting , Transportador 3 de Aminoácido Excitatório/metabolismo , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Proteolipídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética
5.
Hum Mutat ; 35(4): 470-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24449431

RESUMO

Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention.


Assuntos
Deficiências do Desenvolvimento/genética , Doenças do Sistema Nervoso/genética , Proteínas Quinases/genética , Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/sangue , Deficiências do Desenvolvimento/dietoterapia , Fibroblastos/enzimologia , Humanos , Masculino , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/dietoterapia , Pediatria , Proteínas Quinases/deficiência
6.
Mol Aspects Med ; 34(2-3): 638-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23268354

RESUMO

The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.


Assuntos
Sistema y+L de Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/fisiologia , Aminoácidos/metabolismo , Modelos Moleculares , Família Multigênica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Sistema y+L de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Northern Blotting , Humanos , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Neoplasias/metabolismo , Podócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
J Biol Chem ; 280(12): 12002-11, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15659399

RESUMO

System L amino acid transporters mediate the movement of bulky neutral amino acids across cell membranes. Until now three proteins that induce system L activity have been identified: LAT1, LAT2, and LAT3. The former two proteins belong to the solute carrier family 7 (SLC7), whereas the latter belongs to SLC43. In the present study we present a new cDNA, designated LAT4, which also mediates system L activity when expressed in Xenopus laevis oocytes. Human LAT4 exhibits 57% identity to human LAT3. Like LAT3, the amino acid transport activity induced by LAT4 is sodium-, chloride- and pH-independent, is not trans-stimulated, and shows two kinetic components. The low affinity component of LAT4 induced activity is sensitive to the sulfhydryl-specific reagent N-ethylmaleimide but not that with high affinity. Mutation in LAT4 of the SLC43 conserved serine 297 to alanine abolishes sensitivity to N-ethylmaleimide. LAT4 activity is detected at the basolateral membrane of PCT kidney cells. In situ hybridization experiments show that LAT4 mRNA is restricted to the epithelial cells of the distal tubule and the collecting duct in the kidney. In the intestine, LAT4 is mainly present in the cells of the crypt.


Assuntos
Sistema L de Transporte de Aminoácidos/genética , Sequência de Aminoácidos , Sistema L de Transporte de Aminoácidos/análise , Sistema L de Transporte de Aminoácidos/fisiologia , Sistemas de Transporte de Aminoácidos Básicos/análise , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/fisiologia , Animais , Etilmaleimida/farmacologia , Feminino , Humanos , Hibridização In Situ , Intestinos/química , Rim/química , Camundongos , Dados de Sequência Molecular , Fenilalanina/metabolismo , RNA Mensageiro/análise , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...