Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 93(1-4): 161-87, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17397963

RESUMO

Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.


Assuntos
Sedimentos Geológicos/química , Geologia/métodos , Movimentos da Água , Difusão , Monitoramento Ambiental/métodos , Modelos Estatísticos , Porosidade , Resíduos Radioativos , Fatores de Tempo , Poluentes Químicos da Água , Purificação da Água/métodos , Abastecimento de Água
2.
J Contam Hydrol ; 70(3-4): 153-71, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15134873

RESUMO

Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of 1 x 10(-11) m2 and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level.


Assuntos
Espaços Confinados , Geologia , Modelos Teóricos , Exposição Ocupacional/análise , Radônio/análise , Ventilação/métodos , Movimentos do Ar , Pressão Atmosférica , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Fenômenos Geológicos , Nevada , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/normas , Permeabilidade , Porosidade
3.
J Contam Hydrol ; 68(1-2): 83-95, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14698872

RESUMO

We present a simple analytical solution for one-dimensional steady heat transfer with convection and conduction through a multilayer system such as a vadose zone. We assume that each layer is homogeneous and has a constant thermal diffusivity. The mass/heat flow direction is perpendicular to the layers, and the mass flow rate is a constant. The analytical solution presented in this study also assumes constant known temperatures at the two boundaries of the system. Although the analytical solution gives the temperature as a function of a few parameters, we focus on the inverse application to estimate the percolation rate in a vadose zone. Example applications have shown that with reliable field observation data, the solution can be used to determine the percolation rate to high degree of accuracy (e.g., to mm/year). In some other cases, the solution may also be helpful in characterizing potential lateral flow along layer divides.


Assuntos
Modelos Teóricos , Movimentos da Água , Solo , Temperatura
4.
J Contam Hydrol ; 64(1-2): 113-27, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12744832

RESUMO

The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.


Assuntos
Carbonato de Cálcio/química , Modelos Teóricos , Resíduos Radioativos , Gerenciamento de Resíduos/métodos , Precipitação Química , Humanos
5.
J Contam Hydrol ; 62-63: 173-88, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12714290

RESUMO

Because the continuum approach is relatively simple and straightforward to implement, it has been commonly used in modeling flow and transport in unsaturated fractured rock. However, the usefulness of this approach can be questioned in terms of its adequacy for representing fingering flow and transport in unsaturated fractured rock. The continuum approach thus needs to be evaluated carefully by comparing simulation results with field observations directly related to unsaturated flow and transport processes. This paper reports on such an evaluation, based on a combination of model calibration and prediction, using data from an infiltration test carried out in a densely fractured rock within the unsaturated zone of Yucca Mountain, Nevada. Comparisons between experimental and modeling results show that the continuum approach may be able to capture important features of flow and transport processes observed from the test. The modeling results also show that matrix diffusion may have a significant effect on the overall transport behavior in unsaturated fractured rocks, which can be used to estimate effective fracture-matrix interface areas based on tracer transport data. While more theoretical, numerical, and experimental studies are needed to provide a conclusive evaluation, this study suggests that the continuum approach is useful for modeling flow and transport in unsaturated, densely fractured rock.


Assuntos
Geologia , Modelos Teóricos , Movimentos da Água , Calibragem , Difusão , Previsões , Fenômenos Geológicos , Nevada , Resíduos Radioativos , Eliminação de Resíduos
6.
J Contam Hydrol ; 62-63: 213-35, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12714292

RESUMO

In this study, porewater chloride data from Yucca Mountain, NV are analyzed and modeled by three-dimensional chemical transport simulation and analytical methods. The simulation modeling approach is based on a continuum formulation of coupled multiphase fluid flow and tracer transport processes through fractured porous rock using a dual-continuum concept. Infiltration rate calibrations were performed using the porewater chloride data. Model results of chloride distributions were improved in matching the observed data with the calibrated infiltration rates. Statistical analyses of the frequency distribution for overall percolation fluxes and chloride concentration in the unsaturated zone system demonstrate that the use of the calibrated infiltration rates had an insignificant effect on the distribution of simulated percolation fluxes but significantly changed the predicted distribution of simulated chloride concentrations. An analytical method was also applied to model transient chloride transport. The method was verified by three-dimensional simulation results to be capable of capturing major chemical transient behavior and trends. Effects of lateral flow in the Paintbrush nonwelded unit on percolation fluxes and chloride distribution were studied by three-dimensional simulations with increased horizontal permeability. The combined results from these model calibrations furnish important information for the UZ model studies, contributing to performance assessment of the potential repository.


Assuntos
Cloretos/análise , Modelos Teóricos , Movimentos da Água , Calibragem , Filtração , Fenômenos Geológicos , Geologia , Nevada , Porosidade , Resíduos Radioativos , Eliminação de Resíduos
7.
J Contam Hydrol ; 60(1-2): 1-30, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12498572

RESUMO

The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.


Assuntos
Geologia , Movimentos da Água , Calibragem , Fenômenos Geológicos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...