Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(9): e53, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33660771

RESUMO

Molecular machines within cells dynamically assemble, disassemble and reorganize. Molecular interactions between their components can be observed at the single-molecule level and quantified using colocalization single-molecule spectroscopy, in which individual labeled molecules are seen transiently associating with a surface-tethered partner, or other total internal reflection fluorescence microscopy approaches in which the interactions elicit changes in fluorescence in the labeled surface-tethered partner. When multiple interacting partners can form ternary, quaternary and higher order complexes, the types of spatial and temporal organization of these complexes can be deduced from the order of appearance and reorganization of the components. Time evolution of complex architectures can be followed by changes in the fluorescence behavior in multiple channels. Here, we describe the kinetic event resolving algorithm (KERA), a software tool for organizing and sorting the discretized fluorescent trajectories from a range of single-molecule experiments. KERA organizes the data in groups by transition patterns, and displays exhaustive dwell time data for each interaction sequence. Enumerating and quantifying sequences of molecular interactions provides important information regarding the underlying mechanism of the assembly, dynamics and architecture of the macromolecular complexes. We demonstrate KERA's utility by analyzing conformational dynamics of two DNA binding proteins: replication protein A and xeroderma pigmentosum complementation group D helicase.


Assuntos
Software , Algoritmos , DNA/química , Fluorescência , Cinética , Conformação Proteica , Domínios Proteicos , Proteína de Replicação A/química , Proteína Grupo D do Xeroderma Pigmentoso/química
2.
Bioessays ; 38(11): 1117-1122, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539869

RESUMO

Many proteins responsible for genome maintenance interact with one another via short sequence motifs. The best known of these are PIP motifs, which mediate interactions with the replication protein PCNA. Others include RIR motifs, which bind the translesion synthesis protein Rev1, and MIP motifs, which bind the mismatch repair protein Mlh1. Although these motifs have similar consensus sequences, they have traditionally been viewed as separate motifs, each with their own target protein. In this article, we review several recent studies that challenge this view. Taken together, they imply that these different motifs are not distinct entities. Instead, there is a single, broader class of motifs, which we call "PIP-like" motifs, which have overlapping specificities and are capable of binding multiple target proteins. Given this, we must reassess the role of these motifs in forming the network of interacting proteins responsible for genome maintenance.


Assuntos
Reparo do DNA , Replicação do DNA , Domínios e Motivos de Interação entre Proteínas , Humanos , Proteína 1 Homóloga a MutL/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
PLoS One ; 11(6): e0157023, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258147

RESUMO

Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication and repair by interacting with a large number of proteins involved in these processes. Two amino acid substitutions in PCNA, both located at the subunit interface, have previously been shown to block translesion synthesis (TLS), a pathway for bypassing DNA damage during replication. To better understand the role of the subunit interface in TLS, we used random mutagenesis to generate a set of 33 PCNA mutants with substitutions at the subunit interface. We assayed the full set of mutants for viability and sensitivity to ultraviolet (UV) radiation. We then selected a subset of 17 mutants and measured their rates of cell growth, spontaneous mutagenesis, and UV-induced mutagenesis. All except three of these 17 mutants were partially or completely defective in induced mutagenesis, which indicates a partial or complete loss of TLS. These results demonstrate that the integrity of the subunit interface of PCNA is essential for efficient TLS and that even conservative substitutions have the potential to disrupt this process.


Assuntos
Mutação/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Mutagênese , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
4.
Nucleic Acids Res ; 44(17): 8250-60, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27325737

RESUMO

Large multi-protein complexes play important roles in many biological processes, including DNA replication and repair, transcription, and signal transduction. One of the challenges in studying such complexes is to understand their mechanisms of assembly and disassembly and their architectures. Using single-molecule total internal reflection (TIRF) microscopy, we have examined the assembly and disassembly of the multi-protein complex that carries out translesion synthesis, the error-prone replication of damaged DNA. We show that the ternary complexes containing proliferating cell nuclear antigen (PCNA) and two non-classical DNA polymerases, Rev1 and DNA polymerase η, have two architectures: PCNA tool belts and Rev1 bridges. Moreover, these complexes are dynamic and their architectures can interconvert without dissociation. The formation of PCNA tool belts and Rev1 bridges and the ability of these complexes to change architectures are likely means of facilitating selection of the appropriate non-classical polymerase and polymerase-switching events.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , Fluorescência , Cinética , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Nucleotidiltransferases/química , Ligação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química
5.
J Biol Chem ; 291(16): 8735-44, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903512

RESUMO

Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Biochemistry ; 52(33): 5611-9, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23869605

RESUMO

During DNA replication, mismatches and small loops in the DNA resulting from insertions or deletions are repaired by the mismatch repair (MMR) machinery. Proliferating cell nuclear antigen (PCNA) plays an important role in both mismatch-recognition and resynthesis stages of MMR. Previously, two mutant forms of PCNA were identified that cause defects in MMR with little, if any, other defects. The C22Y mutant PCNA protein completely blocks MutSα-dependent MMR, and the C81R mutant PCNA protein partially blocks both MutSα-dependent and MutSß-dependent MMR. In order to understand the structural and mechanistic basis by which these two amino acid substitutions in PCNA proteins block MMR, we solved the X-ray crystal structures of both mutant proteins and carried out further biochemical studies. We found that these amino acid substitutions lead to subtle, distinct structural changes in PCNA. The C22Y substitution alters the positions of the α-helices lining the central hole of the PCNA ring, whereas the C81R substitution creates a distortion in an extended loop near the PCNA subunit interface. We conclude that the structural integrity of the α-helices lining the central hole and this loop are both necessary to form productive complexes with MutSα and mismatch-containing DNA.


Assuntos
Reparo de Erro de Pareamento de DNA , Antígeno Nuclear de Célula em Proliferação/química , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Cristalografia por Raios X , DNA Polimerase III/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Estrutura Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...