Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(11): 2547-2561, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407364

RESUMO

Saliva substitutes are human-made formulations extensively used in medicine, food, and pharmaceutical research to emulate human saliva's biochemical, tribological, and rheological properties. Even though extensional flows involving saliva are commonly encountered in situations such as swallowing, coughing, sneezing, licking, drooling, gleeking, and blowing spit bubbles, rheological evaluations of saliva and its substitutes in most studies rely on measured values of shear viscosity. Natural saliva possesses stringiness or spinnbarkeit, governed by extensional rheology response, which cannot be evaluated or anticipated from the knowledge of shear rheology response. In this contribution, we comprehensively examine the rheology of twelve commercially available saliva substitutes using torsional rheometry for rate-dependent shear viscosity and dripping-onto-substrate (DoS) protocols for extensional rheology characterization. Even though most formulations are marketed as having suitable rheology, only three displayed measurable viscoelasticity and strain-hardening. Still, these too, failed to emulate the viscosity reduction with the shear rate observed for saliva or match perceived stringiness. Finally, we explore the challenges in creating saliva-like formulations for dysphagia patients and opportunities for using DoS rheometry for diagnostics and designing biomimetic fluids.


Assuntos
Saliva , Humanos , Saliva/fisiologia , Reologia/métodos , Viscosidade
2.
Soft Matter ; 19(48): 9413-9427, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014426

RESUMO

The rheology, stability, texture, and taste of mayonnaise, a dense oil-in-water (O/W) emulsion, are determined by interfacially active egg lipids and proteins. Often mayonnaise is presented as a challenging example of an egg-based food material that is hard to emulate using plant-based or vegan ingredients. In this contribution, we characterize the flow behavior of animal-based and plant-based mayo emulsions, seeking to decipher the signatures that make the real mayonnaise into such an appetizing complex fluid. We find that commercially available vegan mayos can emulate the apparent yield stress and shear thinning of yolk-based mayonnaise by the combined influence of plant-based proteins (like those extracted from chickpeas) and polysaccharide thickeners. However, we show that the dispensing and dipping behavior of egg-based and vegan mayos display striking differences in neck shape, sharpness, and length. The ratio of apparent extensional to shear yield stress value is found to be larger than the theoretically predicted square root of three for all mayo emulsions. The analysis of neck radius evolution of these extension thinning yield stress fluids reveals that even when the power law exponent governing the intermediate pinching dynamics is similar to the exponent obtained from the shear flow curve, the terminal pinching dynamics show strong local effects, possibly influenced by interstitial fluid properties, finite drop size and deformations, and capillarity.


Assuntos
Cicer , Animais , Humanos , Veganos , Reologia , Emulsões
3.
J Colloid Interface Sci ; 638: 487-497, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758259

RESUMO

HYPOTHESIS: Protein nanofibrils (PNF) resulting from the self-assembly of proteins or peptides can present structural ordering triggered by numerous factors, including the shear flow. We hypothesize that i) depending on the contour length of the PNF and the magnitude of the shear rate applied to the PNF dispersion, they exhibit specific orientation, and ii) it is possible to predict the alignment of PNF by establishing a flow-alignment relationship. Understanding such a relationship is pivotal to improving the fundamental knowledge and application of fibril systems. EXPERIMENTS: We use ß-lactoglobulin PNF aqueous dispersions with different average contour lengths but equal persistence lengths. We employ simple shear-dominated microfluidic devices with state-of-the-art imaging techniques: flow-induced birefringence (FIB) and micro-particle image velocimetry (µ-PIV), to probe the effect of shear flow on PNF alignment. FINDINGS: We provide an empirical relationship connecting the birefringence Δn (quantifying the extent of PNF alignment), and the Péclet number Pe (correlating the shear rate of the flow relative to the rotational diffusion of PNF) to understand the flow-alignment behavior of PNF under shear-dominated flows. Furthermore, we assess the alignment and flow profile of PNF at both high and low flow rates. The length of PNF emerges as a controlling parameter capable of modulating PNF alignment at specific shear rates. Our results shed new insights into the hydrodynamic behavior of PNF, which is highly relevant to various industrial processes involving the fibril systems.


Assuntos
Proteínas , Reologia
4.
J Texture Stud ; 51(1): 67-77, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31087645

RESUMO

We discuss food oral processing research over the last two decades and consider strategies for quantifying the food breakdown model, originally conceptualized by Hutchings and Lillford. The key innovation in their seminal 1988 paper was shifting the focus from intact food properties, measured in the lab, toward strategies to capture the dynamic nature of eating. This has stimulated great progress in the field, but a key aspect missing in oral processing research is the conversion of the Hutchings and Lillford breakdown path conceptual model into quantifiable parameters considered in the context of physiological factors such as saliva and oral movements. To address these shortcomings, we propose the following analysis: Hutchings's and Lillford's definitions of "Structure" and "Lubrication" are incomplete and they comprise many and varied physicochemical properties. We offer, here, a deeper analysis of each parameter, and propose strategies for researchers to consider in their quantification as an update of the Hutchings and Lillford Breakdown path.


Assuntos
Alimentos , Boca/fisiologia , Saliva/fisiologia , Humanos , Lubrificação , Reologia , Paladar , Viscosidade
5.
Food Res Int ; 123: 208-216, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284970

RESUMO

Oral processing of solid foods is an extremely dynamic and complicated activity that involves multiple processes in tandem such as comminution, mixing, dilution, hydration and enzymatic breakdown that gradually transform the food from a morsel or a bite to a bolus that is ready for swallowing. It is hypothesised that just after "first bite" and initial particle reduction and hydration of solid brittle foods, the response to deformation of food particles is analogous to studies on the flowability and cohesion of wetted powders, which are effectively characterised using a Ring Shear Tester (RST). We examine this hypothesis and determine whether the RST measures properties of solid snack foods (potato chips or crisps, PCs) that are relevant to their dynamic sensory response, which includes capturing the effect of hydration on comminuted PCs. The RST is found to differentiate PCs obtained from different manufacturing sources (e.g. baked versus fried), and its measurements of cohesion and friction can be considered in context of the structure and composition of the PCs as well as oral processing. Remarkably, RST measurements for this small set of PC samples correlate with several sensory attributes that arise during mastication, which includes Sharpness and Ease of Clearance. This study highlights the potential of the RST as a new tool for oral processing research.


Assuntos
Mastigação/fisiologia , Lanches , Solanum tuberosum , Adulto , Estudos de Avaliação como Assunto , Feminino , Tecnologia de Alimentos , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Modelos Biológicos , Modelos Teóricos , Paladar
6.
J Agric Food Chem ; 67(32): 8725-8734, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31295997

RESUMO

Texture perception is conceptualized as an emergent cognitive response to food characteristics that comprise several physical and chemical properties. Contemporary oral processing research focuses on revealing the relationship between the sensory perceptions and food properties, with the goal of enabling rational product design. One major challenge is associated with revealing the complex molecular and biocolloidal interactions underpinning even simple texture percepts. Here, we introduce in vitro oral processing, which considers oral processing in terms of discrete units of operation (first bite, comminution, granulation, bolus formation, and tribology). Within this framework, we systematically investigate the material properties that govern each specific oral processing unit operation without being impacted by the biological complexity of the oral environment. We describe how this framework was used to rationally design a low-fat potato chip with improved sensory properties by investigating the impact from adding back, to a low-fat potato chip, a small amount of oil mixed with the surface-active agent polyglycerol polyricinoleate (PGPR). The relevance of instrumental measures is validated by sensory assessment, whereby panelists ranked the perceived oiliness of three different types of potato chips. The sensory results indicate that perceived oiliness was higher when a low-fat potato chip was supplemented with an additional 0.5% (w/w) topical coating (the coating comprised 15%, w/w, PGPR in oil) compared to the unaltered low-fat potato chip. The perceived difference in oiliness is hypothesized to correspond to the dynamic friction measured in vitro with a saliva-coated substrate in the presence and absence of PGPR. The study illustrates how dividing oral processing into distinct units provides a rational approach to food product design focused on controlling key sensory attributes.


Assuntos
Gorduras/análise , Boca/metabolismo , Solanum tuberosum/metabolismo , Gorduras/metabolismo , Manipulação de Alimentos , Humanos , Modelos Biológicos , Reologia , Saliva/metabolismo , Lanches , Solanum tuberosum/química
7.
Carbohydr Polym ; 133: 507-16, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26344308

RESUMO

Soluble starch polymers are shown to enhance the lubrication of ionic liquid-water solvent mixtures in low-pressure tribological contacts between hydrophobic substrates. A fraction of starch polymers become highly soluble in 1-ethyl-3-methylimidazolium acetate (EMIMAc)-water solvents with ionic liquid fraction ≥60wt%. In 65wt% EMIMAc, a small amount of soluble starch (0.33wt%) reduces the boundary friction coefficient by up to a third in comparison to that of the solvent. This low-friction is associated with a nanometre thick film (ca. 2nm) formed from the amylose fraction of the starch. In addition, under conditions where there is a mixture of insoluble starch particles and solubilised starch polymers, it is found that the presence of dissolved amylose enhances the lubrication of starch suspensions between roughened substrates. These findings open up the possibility of utilising starch biopolymers, as well as other hydrocolloids, for enhancing the performance of ionic liquid lubricants.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Amido/química , Água/química , Dimetilpolisiloxanos/química , Elastômeros/química , Imidazóis/química , Solubilidade , Propriedades de Superfície , Temperatura
8.
Food Funct ; 5(11): 2775-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25250900

RESUMO

Oral processing of most foods is inherently destructive: solids are broken into particles before reassembly into a hydrated bolus while salivary enzymes degrade food components. In order to investigate the underlying physics driving changes during oral processing, we capture the transient rheological behaviour of a simulated potato chip bolus during hydration by a buffer with or without α-amylase. In the absence of amylase and for all oil contents and solids weight fractions tested, we find a collapse of the transient data when graphed according to simple Fickian diffusion. In the presence of amylase, we find effects on the transient and pseudo steady state bolus rheology. Within the first minute of mixing, the amylase degrades only ≈6% of the starch but that leads to an order of magnitude reduction in the bolus elasticity, as compared to the case without amylase. Thus, for an in vitro bolus, only a small amount of starch needs to be digested to have a large impact on the bolus rheology very soon after mixing.


Assuntos
Digestão , Amido/química , Animais , Modelos Biológicos , Reologia , Lanches , Solanum tuberosum/química , Suínos , Água/química , alfa-Amilases/metabolismo
9.
Carbohydr Polym ; 94(1): 520-30, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23544570

RESUMO

This work revealed that the interactions between starch, the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), and water might contribute to the phase transition (gelatinization, dissolution, or both) of native starch at reduced temperature. Using mixtures of water and [Emim][OAc] at certain ratios (7.2/1 and 10.8/1 mol/mol), both the gelatinization and dissolution of the starch occur competitively, but also in a synergistic manner. At lower [Emim][OAc] concentration (water/[Emim][OAc] molar ratio≥25.0/1), mainly gelatinization occurs which is slightly impeded by the strong interaction between water and [Emim][OAc]; while at higher [Emim][OAc] concentration (water/[Emim][OAc] molar ratio≤2.8/1), the dissolution of starch is the major form of phase transition, possibly restricted by the difficulty of [Emim][OAc] to interact with starch.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Amido/química , Amilose/química , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Transição de Fase , Solventes/química , Viscosidade , Água/química , Zea mays/química
10.
AAPS PharmSciTech ; 14(1): 301-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23307066

RESUMO

The controlled release of diflunisal and fluconazole from tablets made of novel polymers, poly(acrylic acid) (PAA) crosslinked with either ß-cyclodextrin (ßCD) or hydroxypropyl-ßCD (HPßCD), was investigated and Carbopol 934P (Carbopol) was used as a highly crosslinked PAA for comparison. Diflunisal strongly associates with ßCD-PAA and HPßCD-PAA polymers (Ka of 486 and 6,055 M(-1) respectively); thus, it was physically mixed into the conjugates and also precomplexed to identify whether decomplexation has any influence on release kinetics. Fluconazole has poor complexing ability (Ka of 34 M(-1) with HPßCD-PAA); thus, it was only tested as a physical mixture. Swelling and adhesion studies were conducted on all tablet combinations and adhesivity of the CD-PAA polymer tablets was maintained. Diflunisal release was much slower from HPßCD-PAA tablets than from ßCD-PAA, suggesting that a higher degree of complexation retards release. The precomplexed diflunisal release was also slower than the physically mixed diflunisal of the corresponding conjugate. The release closely followed zero-order kinetics for HPßCD-PAA, but was more sigmoidal for ßCD-PAA and especially Carbopol. Conversely, poorly associating fluconazole released in almost exactly the same way across both polymers and Carbopol, indicating that the release kinetics of poorly associating drugs are not influenced by the presence of cyclodextrins. In view of the varying profiles and release rates shown with diflunisal for the different polymers, the fluconazole data support the concept that adequate complexation can indeed modulate the release kinetics of drugs.


Assuntos
Resinas Acrílicas/química , Ciclodextrinas/química , Diflunisal/administração & dosagem , Formas de Dosagem , Fluconazol/administração & dosagem , Preparações de Ação Retardada
11.
Waste Manag ; 32(8): 1560-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22465397

RESUMO

Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.


Assuntos
Tubo de Raio Catódico , Resíduo Eletrônico , Vidro , Reciclagem/tendências , Marketing
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...