Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 123: 103404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852365

RESUMO

BACKGROUND: Image-driven dose escalation to tumor subvolumes has been proposed to improve treatment outcome in head and neck cancer (HNC). We used 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) acquired at baseline and into treatment (interim) to identify biologic target volumes (BTVs). We assessed the feasibility of interim dose escalation to the BTV with proton therapy by simulating the effects to organs at risk (OARs). METHODS: We used the semiautomated just-enough-interaction (JEI) method to identify BTVs in 18F-FDG-PET images from nine HNC patients. Between baseline and interim FDG-PET, patients received photon radiotherapy. BTV was identified assuming that high standardized uptake value (SUV) at interim reflected tumor radioresistance. Using Eclipse (Varian Medical Systems), we simulated a 10% (6.8 Gy(RBE1.1)) and 20% (13.6 Gy(RBE1.1)) dose escalation to the BTV with protons and compared results with proton plans without dose escalation. RESULTS: At interim 18F-FDG-PET, radiotherapy resulted in reduced SUV compared to baseline. However, spatial overlap between high-SUV regions at baseline and interim allowed for BTV identification. Proton therapy planning demonstrated that dose escalation to the BTV was feasible, and except for some 20% dose escalation plans, OAR doses did not significantly increase. CONCLUSION: Our in silico analysis demonstrated the potential for interim 18F-FDG-PET response-adaptive dose escalation to the BTV with proton therapy. This approach may give more efficient treatment to HNC with radioresistant tumor subvolumes without increasing normal tissue toxicity. Studies in larger cohorts are required to determine the full potential for interim 18F-FDG-PET-guided dose escalation of proton therapy in HNC.


Assuntos
Estudos de Viabilidade , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Masculino , Feminino
2.
Phys Med Biol ; 68(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37820690

RESUMO

Objective. While integration of variable relative biological effectiveness (RBE) has not reached full clinical implementation, the importance of having the ability to recalculate proton treatment plans in a flexible, dedicated Monte Carlo (MC) code cannot be understated . Here we provide a step-wise method for calibrating dose from a MC code to a treatment planning system (TPS), to obtain required parameters for calculating linear energy transfer (LET), variable RBE and in general enabling clinical realistic research studies beyond the capabilities of a TPS.Approach. Initially, Pristine Bragg peaks (PBP) were calculated in both the Eclipse TPS and the FLUKA MC code. A rearranged Bortfeld energy-range relation was applied to the initial energy of the beam to fine-tune the range of the MC code at 80% dose level distal to the PBP. The energy spread was adapted by dividing the TPS range by the MC range for dose level 80%-20% distal to the PBP. Density and relative proton stopping power were adjusted by comparing the TPS and MC for different Hounsfield units. To find the relationship of dose per primary particle from the MC to dose per monitor unit in the TPS, integration was applied to the area of the Bragg curve. The calibration was validated for spread-out Bragg peaks (SOBP) in water and patient treatment plans. Following the validation, variable RBE were calculated using established models.Main results.The PBPs ranges were within ±0.3mm threshold, and a maximum of 5.5% difference for the SOBPs was observed. The patient validation showed excellent dose agreement between the TPS and MC, with the greatest differences for the lung tumor patient.Significance. Aprocedure for calibrating a MC code to a TPS was developed and validated. The procedure enables MC-based calculation of dose, LET, variable RBE, advanced (secondary) particle tracking and more from treatment plans.


Assuntos
Terapia com Prótons , Prótons , Humanos , Eficiência Biológica Relativa , Terapia com Prótons/métodos , Transferência Linear de Energia , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 24(9): e14014, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37161820

RESUMO

INTRODUCTION: Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS: A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and ß parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS: For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION: The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Eficiência Biológica Relativa , Oxigênio , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons , Hipóxia/etiologia , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326516

RESUMO

Enhancing treatment of locally advanced non-small cell lung cancer (LA-NSCLC) by using pencil beam scanning proton therapy (PBS-PT) is attractive, but little knowledge exists on the effects of uncertainties occurring between the planning (Plan) and the start of treatment (Start). In this prospective simulation study, we investigated the clinical potential for PBS-PT under the influence of such uncertainties. Imaging with 4DCT at Plan and Start was carried out for 15 patients that received state-of-the-art intensity-modulated radiotherapy (IMRT). Three PBS-PT plans were created per patient: 3D robust single-field uniform dose (SFUD), 3D robust intensity-modulated proton therapy (IMPT), and 4D robust IMPT (4DIMPT). These were exposed to setup and range uncertainties and breathing motion at Plan, and changes in breathing motion and anatomy at Start. Target coverage and dose-volume parameters relevant for toxicity were compared. The organ at risk sparing at Plan was greatest with IMPT, followed by 4DIMPT, SFUD and IMRT, and persisted at Start. All plans met the preset criteria for target robustness at Plan. At Start, three patients had a lack of CTV coverage with PBS-PT. In conclusion, the clinical potential for heart and lung toxicity reduction with PBS-PT was substantial and persistent. Altered breathing patterns between Plan and Start jeopardized target coverage for all PBS-PT techniques.

5.
Phys Med ; 76: 166-172, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32683269

RESUMO

INTRODUCTION: The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia. METHODS: The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01-30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations. RESULTS: The SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses. CONCLUSION: We realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.


Assuntos
Terapia com Prótons , Humanos , Hipóxia , Método de Monte Carlo , Oxigênio , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...