Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 988
Filtrar
1.
medRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39228737

RESUMO

Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated mutation pathway (SRGAP2C). We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.

2.
Mitochondrion ; 79: 101954, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245194

RESUMO

We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α = 0.001. Notably, when 5 % or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31 % of African Ancestry, mean age of 62, with 58 % women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on both pooled samples and within each ancestry group. Our results suggest that mtDNA-encoded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the RNR1 and RNR2 genes (p < 0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations (p < 0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.

4.
Cancer Res Commun ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324671

RESUMO

Prior cohort studies assessing cancer risk based on immune cell subtype profiles have predominantly focused on White populations. This limitation obscures vital insights into how cancer risk varies across race. Immune cell subtype proportions were estimated using deconvolution based on leukocyte DNA methylation markers from blood samples collected at baseline on participants without cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Over a mean of 17.5 years of follow-up, 668 incident cancers were diagnosed in 2,467 Black participants. Cox proportional hazards regression was used to examine immune cell subtype proportions and overall cancer incidence and site-specific incidence (lung, breast, and prostate cancers). Higher T regulatory cell proportions were associated with higher lung cancer risk (hazard ratio [HR] = 1.22, 95% confidence interval [CI]= 1.06-1.41 per 1% increase in cell proportion) and a borderline increase in overall cancer risk (p=0.06). Increased memory B cell proportions were associated with significantly higher risk of prostate cancer and all cancers (HR=1.17, 95% CI=1.04-1.33 and HR=1.13, 95% CI=1.05-1.22, per 1% increase in cell proportion, respectively). Other immune cell subtypes did not display statistically significant associations with cancer risk in the main analyses. These results in Black participants align closely with prior findings in largely White populations. Our results add to the growing evidence demonstrating the important role of adaptive immunity in cancer risk.

5.
Front Pediatr ; 12: 1393321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228441

RESUMO

Background: Understanding the distinct immunologic responses to SARS-CoV-2 infection among pediatric populations is pivotal in navigating the COVID-19 pandemic and informing future public health strategies. This study aimed to identify factors associated with heightened antibody responses in children and adolescents to identify potential unique immune dynamics in this population. Methods: Data collected between July and December 2023 from the Texas Coronavirus Antibody REsponse Survey (Texas CARES), a statewide prospective population-based antibody survey among 1-to-19-year-old participants, were analyzed. Each participant had the following data available for analysis: (1) Roche Elecsys® Anti-SARS-CoV-2 Immunoassay for Nucleocapsid protein antibodies (Roche N-test), (2) qualitative and semi-quantitative detection of antibodies to the SARS CoV-2 spike protein receptor binding domain (Roche S-test), and (3) self-reported antigen/PCR COVID-19 test results, vaccination, and health status. Statistical analysis identified associations between participant characteristics and spike antibody quartile group. Results: The analytical sample consisted of 411 participants (mean age 12.2 years, 50.6% female). Spike antibody values ranged from a low of 6.3 U/ml in the lowest quartile to a maximum of 203,132.0 U/ml in the highest quartile in the aggregate sample. Older age at test date (OR = 1.22, 95% CI: 1.12, 1.35, p < .001) and vaccination status (primary series/partially vaccinated, one or multiple boosters) showed significantly higher odds of being in the highest spike antibody quartile compared to younger age and unvaccinated status. Conversely, fewer days since the last immunity challenge showed decreased odds (OR = 0.98, 95% CI: 0.96, 0.99, p = 0.002) of being in the highest spike antibody quartile vs. more days since last immunity challenge. Additionally, one out of every three COVID-19 infections were asymptomatic. Conclusions: Older age, duration since the last immunity challenge (vaccine or infection), and vaccination status were associated with heightened spike antibody responses, highlighting the nuanced immune dynamics in the pediatric population. A significant proportion of children/adolescents continue to have asymptomatic infection, which has important public health implications.

6.
Am J Hum Genet ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39270648

RESUMO

Large-scale, multi-ethnic whole-genome sequencing (WGS) studies, such as the National Human Genome Research Institute Genome Sequencing Program's Centers for Common Disease Genomics (CCDG), play an important role in increasing diversity for genetic research. Before performing association analyses, assessing Hardy-Weinberg equilibrium (HWE) is a crucial step in quality control procedures to remove low quality variants and ensure valid downstream analyses. Diverse WGS studies contain ancestrally heterogeneous samples; however, commonly used HWE methods assume that the samples are homogeneous. Therefore, directly applying these to the whole dataset can yield statistically invalid results. To account for this heterogeneity, HWE can be tested on subsets of samples that have genetically homogeneous ancestries and the results aggregated at each variant. To facilitate valid HWE subset testing, we developed a semi-supervised learning approach that predicts homogeneous ancestries based on the genotype. This method provides a convenient tool for estimating HWE in the presence of population structure and missing self-reported race and ethnicities in diverse WGS studies. In addition, assessing HWE within the homogeneous ancestries provides reliable HWE estimates that will directly benefit downstream analyses, including association analyses in WGS studies. We applied our proposed method on the CCDG dataset, predicting homogeneous genetic ancestry groups for 60,545 multi-ethnic WGS samples to assess HWE within each group.

7.
medRxiv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39281768

RESUMO

We performed large-scale genome-wide gene-sleep interaction analyses of lipid levels to identify novel genetic variants underpinning the biomolecular pathways of sleep-associated lipid disturbances and to suggest possible druggable targets. We collected data from 55 cohorts with a combined sample size of 732,564 participants (87% European ancestry) with data on lipid traits (high-density lipoprotein [HDL-c] and low-density lipoprotein [LDL-c] cholesterol and triglycerides [TG]). Short (STST) and long (LTST) total sleep time were defined by the extreme 20% of the age- and sex-standardized values within each cohort. Based on cohort-level summary statistics data, we performed meta-analyses for the one-degree of freedom tests of interaction and two-degree of freedom joint tests of the main and interaction effect. In the cross-population meta-analyses, the one-degree of freedom variant-sleep interaction test identified 10 loci (P int <5.0e-9) not previously observed for lipids. Of interest, the ASPH locus (TG, LTST) is a target for aspartic and succinic acid metabolism previously shown to improve sleep and cardiovascular risk. The two-degree of freedom analyses identified an additional 7 loci that showed evidence for variant-sleep interaction (P joint <5.0e-9 in combination with P int <6.6e-6). Of these, the SLC8A1 locus (TG, STST) has been considered a potential treatment target for reduction of ischemic damage after acute myocardial infarction. Collectively, the 17 (9 with STST; 8 with LTST) loci identified in this large-scale initiative provides evidence into the biomolecular mechanisms underpinning sleep-duration-associated changes in lipid levels. The identified druggable targets may contribute to the development of novel therapies for dyslipidemia in people with sleep disturbances.

8.
medRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39040172

RESUMO

The number of assays on highly-multiplexed proteomic platforms has grown tenfold over the past 15 years from less than 1,000 to >11,000. The leading aptamer-based and antibody-based platforms have different strengths. For example, Eldjarn et al1 demonstrated that the aptamer-based SomaScan 5k (4,907 assays, assessed in the Icelandic 36K) and the antibody-based Olink Explore 3072 (2,931 assays, assessed in the UK BioBank) had a similar number of cis-pQTLs among all targets (2,120 vs. 2,101) but Olink had a greater number of cis-pQTLs among the overlapping targets (1,164 vs. 1,467). Analysis of split plasma measures showed the SomaScan assays to be more precise: median coefficient of variation (CV) of 9.9% vs. 16.5% for Olink.1 Precision of the newest versions of the platforms-SomaScan 11k (>11,000 assays, released in December 2023) and Olink Explore HT (>5,400 assays, released in July 2023)-has not yet been established. We assessed the reproducibility of the SomaScan 11k and Olink Explore HT using split plasma samples from 102 Atherosclerosis Risk in Communities (ARIC) Study participants. We found that the SomaScan 11k assays had a median CV of 6.8% (vs 6.6% for the subset of assays available on the SomaScan 5k) and the Olink Explore HT assays had a median CV of 35.7% (vs 19.8% for the subset of assays available on the Olink Explore 3072). Across Olink assays, the CVs were strongly negatively correlated with protein detectability, i.e., percent of samples above the limit of detection (LOD). For the 4,443 overlapping assays, the distribution of between-platform correlations was bimodal with a peak at r~0 and with another smaller peak at r~0.8. These findings on precision are consistent with the updated results by Eldjarn et al1 but indicate that precision of these two leading platforms in human plasma has diverged as the number of included proteins has increased.

9.
Alzheimers Dement ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946675

RESUMO

INTRODUCTION: We conducted admixture mapping and fine-mapping analyses to identify ancestry-of-origin loci influencing cognitive abilities. METHODS: We estimated the association of local ancestry intervals across the genome with five neurocognitive measures in 7140 diverse Hispanic and Latino adults (mean age 55 years). We prioritized genetic variants in associated loci and tested them for replication in four independent cohorts. RESULTS: We identified nine local ancestry-associated regions for the five neurocognitive measures. There was strong biological support for the observed associations to cognitive function at all loci and there was statistical evidence of independent replication at 4q12, 9p22.1, and 13q12.13. DISCUSSION: Our study identified multiple novel loci harboring genes implicated in cognitive functioning and dementia, and uncovered ancestry-relevant genetic variants. It adds to our understanding of the genetic architecture of cognitive function in Hispanic and Latino adults and demonstrates the power of admixture mapping to discover unique haplotypes influencing cognitive function, complementing genome-wide association studies. HIGHLIGHTS: We identified nine ancestry-of-origin chromosomal regions associated with five neurocognitive traits. In each associated region, we identified single nucleotide polymorphisms (SNPs) that explained, at least in part, the admixture signal and were tested for replication in independent samples of Black, non-Hispanic White, and Hispanic/Latino adults with the same or similar neurocognitive tests. Statistical evidence of independent replication of the prioritized SNPs was observed for three of the nine associations, at chr4q12, chr9p22.1, and chr13q12.13. At all loci, there was strong biological support for the observed associations to cognitive function and dementia, prioritizing genes such as KIT, implicated in autophagic clearance of neurotoxic proteins and on mast cell and microglial-mediated inflammation; SLC24A2, implicated in synaptic plasticity associated with learning and memory; and MTMR6, implicated in phosphoinositide lipids metabolism.

10.
medRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39040200

RESUMO

Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study utilized receptor-binding domain (RBD) amplicon sequencing of wastewater samples to monitor the SARS-CoV-2 community dynamics and evolution in El Paso, TX. Over 17 months, we identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Our findings demonstrated early detection of variants and identification of unreported outbreaks, while showing strong consistency with clinical genome sequencing data at the local, state, and national levels. Alpha diversity analyses revealed significant periodical variations, with the highest diversity observed in winter and the outbreak lag phases, likely due to lower competition among variants before the outbreak growth phase. The data underscores the importance of low transmission periods for rapid mutation and variant evolution. This study highlights the effectiveness of integrating RBD amplicon sequencing with wastewater surveillance in tracking viral evolution, understanding variant emergence, and enhancing public health preparedness.

11.
Circulation ; 150(3): 215-229, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39008559

RESUMO

BACKGROUND: Dietary acculturation, or adoption of dominant culture diet by migrant groups, influences human health. We aimed to examine dietary acculturation and its relationships with cardiovascular disease (CVD), gut microbiota, and blood metabolites among US Hispanic and Latino adults. METHODS: In the HCHS/SOL (Hispanic Community Health Study/Study of Latinos), US exposure was defined by years in the United States (50 states and Washington, DC) and US nativity. A dietary acculturation pattern was derived from 14 172 participants with two 24-hour dietary recalls at baseline (2008-2011) using least absolute shrinkage and selection operator regression, with food groups as predictors of US exposure. We evaluated associations of dietary acculturation with incident CVD across ≈7 years of follow-up (n=211/14 172 cases/total) and gut microbiota (n=2349; visit 2, 2014 to 2017). Serum metabolites associated with both dietary acculturation-related gut microbiota (n=694) and incident CVD (n=108/5256 cases/total) were used as proxy measures to assess the association of diet-related gut microbiome with incident CVD. RESULTS: We identified an empirical US-oriented dietary acculturation score that increased with US exposure. Higher dietary acculturation score was associated with higher risk of incident CVD (hazard ratio per SD, 1.33 [95% CI, 1.13-1.57]), adjusted for sociodemographic, lifestyle, and clinical factors. Sixty-nine microbial species (17 enriched from diverse species, 52 depleted mainly from fiber-utilizing Clostridia and Prevotella species) were associated with dietary acculturation, driven by lower intakes of whole grains, beans, and fruits and higher intakes of refined grains. Twenty-five metabolites, involved predominantly in fatty acid and glycerophospholipid metabolism (eg, branched-chain 14:0 dicarboxylic acid** and glycerophosphoethanolamine), were associated with both diet acculturation-related gut microbiota and incident CVD. Proxy association analysis based on these metabolites suggested a positive relationship between diet acculturation-related microbiome and risk of CVD (r=0.70, P<0.001). CONCLUSIONS: Among US Hispanic and Latino adults, greater dietary acculturation was associated with elevated CVD risk, possibly through alterations in gut microbiota and related metabolites. Diet and microbiota-targeted interventions may offer opportunities to mitigate CVD burdens of dietary acculturation.


Assuntos
Aculturação , Doenças Cardiovasculares , Dieta , Microbioma Gastrointestinal , Hispânico ou Latino , Humanos , Masculino , Feminino , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etnologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto , Dieta/efeitos adversos , Fatores de Risco , Incidência
13.
medRxiv ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39072018

RESUMO

Immigrants from less industrialized countries who are living in the U.S. often bear an elevated risk of multiple disease due to the adoption of a U.S. lifestyle. Blood metabolome holds valuable information on environmental exposure and the pathogenesis of chronic diseases, offering insights into the link between environmental factors and disease burden. Analyzing 634 serum metabolites from 7,114 Hispanics (1,141 U.S.-born, 5,973 foreign-born) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we identified profound blood metabolic shift during acculturation. Machine learning highlighted the prominent role of non-genetic factors, especially food and gut microbiota, in these changes. Immigration-related metabolites correlated with plant-based foods and beneficial gut bacteria for foreign-born Hispanics, and with meat-based or processed food and unfavorable gut bacteria for U.S.-born Hispanics. Cardiometabolic traits, liver, and kidney function exhibited a link with immigration-related metabolic changes, which were also linked to increased risk of diabetes, severe obesity, chronic kidney disease, and asthma. Highlights: A substantial proportion of identified blood metabolites differ between U.S.-born and foreign-born Hispanics/Latinos in the U.S.Food and gut microbiota are the major modifiable contributors to blood metabolomic difference between U.S.-born and foreign-born Hispanics/Latinos.U.S. nativity related metabolites collectively correlate with a spectrum of clinical traits and chronic diseases.

14.
PLoS One ; 19(5): e0303420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739625

RESUMO

INTRODUCTION: Studies indicate that individuals with chronic conditions and specific baseline characteristics may not mount a robust humoral antibody response to SARS-CoV-2 vaccines. In this paper, we used data from the Texas Coronavirus Antibody REsponse Survey (Texas CARES), a longitudinal state-wide seroprevalence program that has enrolled more than 90,000 participants, to evaluate the role of chronic diseases as the potential risk factors of non-response to SARS-CoV-2 vaccines in a large epidemiologic cohort. METHODS: A participant needed to complete an online survey and a blood draw to test for SARS-CoV-2 circulating plasma antibodies at four-time points spaced at least three months apart. Chronic disease predictors of vaccine non-response are evaluated using logistic regression with non-response as the outcome and each chronic disease + age as the predictors. RESULTS: As of April 24, 2023, 18,240 participants met the inclusion criteria; 0.58% (N = 105) of these are non-responders. Adjusting for age, our results show that participants with self-reported immunocompromised status, kidney disease, cancer, and "other" non-specified comorbidity were 15.43, 5.11, 2.59, and 3.13 times more likely to fail to mount a complete response to a vaccine, respectively. Furthermore, having two or more chronic diseases doubled the prevalence of non-response. CONCLUSION: Consistent with smaller targeted studies, a large epidemiologic cohort bears the same conclusion and demonstrates immunocompromised, cancer, kidney disease, and the number of diseases are associated with vaccine non-response. This study suggests that those individuals, with chronic diseases with the potential to affect their immune system response, may need increased doses or repeated doses of COVID-19 vaccines to develop a protective antibody level.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Masculino , Feminino , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Pessoa de Meia-Idade , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Adulto , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Idoso , Texas/epidemiologia , Doença Crônica , Estudos Soroepidemiológicos , Adulto Jovem , Fatores de Risco
15.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798578

RESUMO

Sleep is essential to maintaining health and wellbeing of individuals, influencing a variety of outcomes from mental health to cardiometabolic disease. This study aims to assess the relationships between various sleep phenotypes and blood metabolites. Utilizing data from the Hispanic Community Health Study/Study of Latinos, we performed association analyses between 40 sleep phenotypes, grouped in several domains (i.e., sleep disordered breathing (SDB), sleep duration, timing, insomnia symptoms, and heart rate during sleep), and 768 metabolites measured via untargeted metabolomics profiling. Network analysis was employed to visualize and interpret the associations between sleep phenotypes and metabolites. The patterns of statistically significant associations between sleep phenotypes and metabolites differed by superpathways, and highlighted subpathways of interest for future studies. For example, some xenobiotic metabolites were associated with sleep duration and heart rate phenotypes (e.g. 1H-indole-7-acetic acid, 4-allylphenol sulfate), while ketone bodies and fatty acid metabolism metabolites were associated with sleep timing measures (e.g. 3-hydroxybutyrate (BHBA), 3-hydroxyhexanoylcarnitine (1)). Heart rate phenotypes had the overall largest number of detected metabolite associations. Many of these associations were shared with both SDB and with sleep timing phenotypes, while SDB phenotypes shared relatively few metabolite associations with sleep duration measures. A number of metabolites were associated with multiple sleep phenotypes, from a few domains. The amino acids vanillylmandelate (VMA) and 1-carboxyethylisoleucine were associated with the greatest number of sleep phenotypes, from all domains other than insomnia. This atlas of sleep-metabolite associations will facilitate hypothesis generation and further study of the metabolic underpinnings of sleep health.

16.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766207

RESUMO

Prior cohort studies assessing cancer risk based on immune cell subtype profiles have predominantly focused on White populations. This limitation obscures vital insights into how cancer risk varies across race. Immune cell subtype proportions were estimated using deconvolution based on leukocyte DNA methylation markers from blood samples collected at baseline on participants without cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Over a mean of 17.5 years of follow-up, 668 incident cancers were diagnosed in 2,467 Black participants. Cox proportional hazards regression was used to examine immune cell subtype proportions and overall cancer incidence and site-specific incidence (lung, breast, and prostate cancers). Higher T regulatory cell proportions were associated with statistically significantly higher lung cancer risk (hazard ratio = 1.22, 95% confidence interval = 1.06-1.41 per percent increase). Increased memory B cell proportions were associated with significantly higher risk of prostate cancer (1.17, 1.04-1.33) and all cancers (1.13, 1.05-1.22). Increased CD8+ naïve cell proportions were associated with significantly lower risk of all cancers in participants ≥55 years (0.91, 0.83-0.98). Other immune cell subtypes did not display statistically significant associations with cancer risk. These results in Black participants align closely with prior findings in largely White populations. Findings from this study could help identify those at high cancer risk and outline risk stratifying to target patients for cancer screening, prevention, and other interventions. Further studies should assess these relationships in other cancer types, better elucidate the interplay of B cells in cancer risk, and identify biomarkers for personalized risk stratification.

17.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714703

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Assuntos
Aberrações Cromossômicas , Hematopoiese Clonal , Mosaicismo , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla , Janus Quinase 2/genética , Telomerase/genética , Telomerase/metabolismo , Perda de Heterozigosidade , Estudos Transversais , Mutação , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso
18.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789417

RESUMO

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Assuntos
Estudo de Associação Genômica Ampla , Homeostase do Telômero , Telômero , Humanos , Telômero/genética , Telômero/metabolismo , Células K562 , Homeostase do Telômero/genética , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Sistemas CRISPR-Cas
19.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699360

RESUMO

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.

20.
Am J Med Genet A ; 194(9): e63644, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38688863

RESUMO

The male predominance in sporadic thoracic aortic aneurysm and dissection (TAD) suggests that the X chromosome contributes to TAD, but this has not been tested. We investigated whether X-linked variation-common (minor allele frequency [MAF] ≥0.01) and rare (MAF <0.01)-was associated with sporadic TAD in three cohorts of European descent (Discovery: 364 cases, 874 controls; Replication: 516 cases, 440,131 controls, and ARIC [Atherosclerosis Risk in Communities study]: 753 cases, 2247 controls). For analysis of common variants, we applied a sex-stratified logistic regression model followed by a meta-analysis of sex-specific odds ratios. Furthermore, we conducted a meta-analysis of overlapping common variants between the Discovery and Replication cohorts. For analysis of rare variants, we used a sex-stratified optimized sequence kernel association test model. Common variants results showed no statistically significant findings in the Discovery cohort. An intergenic common variant near SPANXN1 was statistically significant in the Replication cohort (p = 1.81 × 10-8). The highest signal from the meta-analysis of the Discovery and Replication cohorts was a ZNF182 intronic common variant (p = 3.5 × 10-6). In rare variants results, RTL9 reached statistical significance (p = 5.15 × 10-5). Although most of our results were statistically insignificant, our analysis is the most comprehensive X-chromosome association analysis of sporadic TAD to date.


Assuntos
Aneurisma da Aorta Torácica , Dissecção da Aorta Torácica , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Cromossomos Humanos X/genética , Estudos de Coortes , Dissecção da Aorta Torácica/genética , Frequência do Gene , Genes Ligados ao Cromossomo X/genética , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA