Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Algorithmica ; 80(11): 2993-3022, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956378

RESUMO

The hybridization number problem requires us to embed a set of binary rooted phylogenetic trees into a binary rooted phylogenetic network such that the number of nodes with indegree two is minimized. However, from a biological point of view accurately inferring the root location in a phylogenetic tree is notoriously difficult and poor root placement can artificially inflate the hybridization number. To this end we study a number of relaxed variants of this problem. We start by showing that the fundamental problem of determining whether an unrooted phylogenetic network displays (i.e. embeds) an unrooted phylogenetic tree, is NP-hard. On the positive side we show that this problem is FPT in reticulation number. In the rooted case the corresponding FPT result is trivial, but here we require more subtle argumentation. Next we show that the hybridization number problem for unrooted networks (when given two unrooted trees) is equivalent to the problem of computing the tree bisection and reconnect distance of the two unrooted trees. In the third part of the paper we consider the "root uncertain" variant of hybridization number. Here we are free to choose the root location in each of a set of unrooted input trees such that the hybridization number of the resulting rooted trees is minimized. On the negative side we show that this problem is APX-hard. On the positive side, we show that the problem is FPT in the hybridization number, via kernelization, for any number of input trees.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27008672

RESUMO

Given two phylogenetic trees on the same set of taxa X , the maximum parsimony distance dMP is defined as the maximum, ranging over all characters χ on X, of the absolute difference in parsimony score induced by χ on the two trees. In this note, we prove that for binary trees there exists a character achieving this maximum that is convex on one of the trees (i.e., the parsimony score induced on that tree is equal to the number of states in the character minus 1) and such that the number of states in the character is at most 7dMP-5 . This is the first non-trivial bound on the number of states required by optimal characters, convex or otherwise. The result potentially has algorithmic significance because, unlike general characters, convex characters with a bounded number of states can be enumerated in polynomial time.


Assuntos
Algoritmos , Filogenia , Biologia Computacional , Modelos Lineares , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA