Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 32(11): 2339-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21598273

RESUMO

Scale factors for (a) low (<1000 cm(-1)) and high harmonic vibrational frequencies, (b) thermal contributions to enthalpy and entropy, and (c) zero-point vibrational energies have been determined for five hybrid functionals (B3P86, B3PW91, PBE1PBE, BH&HLYP, MPW1K), five pure functionals (BLYP, BPW91, PBEPBE, HCTH93, and BP86), four hybrid meta functionals (M05, M05-2X, M06, and M06-2X) and one double-hybrid functional (B2GP-PLYP) in combination with the correlation consistent basis sets [cc-pVnZ and aug-cc-pVnZ, n = D(2),T(3),Q(4)]. Calculations for vibrational frequencies were carried out on 41 organic molecules and an additional set of 22 small molecules was used for the zero-point vibrational energy scale factors. Before scaling, approximately 25% of the calculated frequencies were within 3% of experimental frequencies. Upon application of the derived scale factors, nearly 90% of the calculated frequencies deviated less than 3% from the experimental frequencies for all of the functionals when the augmented correlation consistent basis sets were used.

3.
J Phys Chem B ; 112(12): 3844-52, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18307333

RESUMO

Photosystem I (PSI) is a multisubunit protein complex which carries out light-induced, transmembrane charge separation in oxygenic photosynthesis. In PSI, the electron-transfer pathway consists of chlorophyll and phylloquinone molecules, as well as iron-sulfur clusters. There are two phylloquinone molecules, which are located in structurally symmetric positions in the reaction center. It has been proposed that both phylloquinone molecules are active as the A1 secondary electron acceptor in bidirectional electron-transfer reactions. The PSI A1 acceptors are of interest because they have the lowest reduction potential of any quinone found in nature. In this work using light-induced FT-IR spectroscopy, isotope-edited spectra are presented, which attribute vibrational bands to the carbonyl stretching vibrations of A1 and A1- and the quinoid ring stretching vibration of A1. Bands are assigned by comparison with hybrid Hartee-Fock density functional calculations, which predict vibrational frequencies, amplitudes, and isotope shifts for the phylloquinone singlet and radical anion states. The results are consistent with an environmental interaction increasing the frequency of the singlet CO vibration and decreasing the frequency of the anion radical CO vibration, relative to model compounds. This environmental interaction may be the asymmetric hydrogen bond to A1/A1-, electrostatic interactions with charged amino acid side chains, or a pi-pi interaction with the indole ring of a nearby tryptophan. Such differential effects on the structure of A1 and A1- may be associated with a destabilization of the anion radical. These studies give novel information concerning the effect of the protein matrix on the PSI electron-transfer cofactor.


Assuntos
Complexo de Proteína do Fotossistema I/química , Vibração , Ânions/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Radicais Livres/química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Complexo de Proteína do Fotossistema I/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Synechocystis/enzimologia , Vitamina K 1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...