Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11835-11848, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38382008

RESUMO

Metal-organic frameworks (MOFs) are emerging as promising materials for water purification membranes, owing to their uniform microporous structures and chemical functionalities. Here, we report a simple procedure for depositing MOF-based nanofiltration membranes on commercial TiO2 ceramic tubular supports, completely avoiding the use of dispersants or binders. Zeolite imidazolate frameworks-8 (ZIF-8) nanocrystals were synthesized in methanol at room temperature and subsequently coated with an amorphous SiO2-ZrO2 gel to generate a dispersion of ZIF-8@SiO2-ZrO2 core-shell nanoparticles. The amorphous SiO2-ZrO2 gel served as a binding agent for the ZIF-8 nanocrystals, thus forming a defect-free continuous membrane layer. After repeating the coating twice, the active layer had a thickness of 0.96 µm, presenting a rejection rate >90% for the total organic carbon in an aquaculture effluent and in a wastewater treatment plant, while reducing the concentration of trimethoprim, here used as a target pollutant. Moreover, the oxide gel provided the MOF-based active layer with good adhesion to the support and enhanced its hydrophilicity, resulting in a membrane with excellent mechanical stability and resistance to fouling during the crossflow filtration of the real wastewater samples. These results implied the high potential of the MOF-based nanocomposite membrane for effective treatment of actual wastewater streams.

2.
RSC Adv ; 13(31): 21459-21470, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37465574

RESUMO

Ce-doped SrFeO3 perovskite-type compounds are known as good thermocatalysts for the abatement of wastewater contaminants of emerging concern. In this work, Sr0.86Ce0.14FeO3-CeO2 perovskite-oxide systems with increasing amounts of cerium excess (0, 5, 10 and 15 mol% Ce), with respect to its maximum solubility in the perovskite, were prepared in one-pot by solution combustion synthesis and the effects of cerium excess on the chemical physical properties and thermocatalytic activity in the bisphenol A degradation were evaluated. The powders were characterized by powder X-ray diffraction combined with Rietveld refinement, X-ray photoelectron spectroscopy, thermal gravimetry, temperature programmed reduction, nitrogen adsorption, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. Results highlight that the perovskite structural, redox, surface, and morphological properties are affected by the in situ co-growth of the main perovskite phase and ceria and that a larger cerium excess has a beneficial effect on the thermocatalytic performance of the perovskite oxide-ceria biphasic system, although ceria is not active as a thermocatalyst itself. Perovskite properties and performance are enhanced by the tetragonal distortion induced by the introduction of cerium excess in the synthesis. It is supposed that a larger oxygen mobility and an easier reducibility are among the most relevant features that contribute to superior thermocatalytic properties of these perovskite oxide-based systems. These results also suggest new perspectives in the nanocomposite preparation and their catalytic applications.

3.
Photochem Photobiol Sci ; 22(3): 503-512, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36327035

RESUMO

Magnetic Fe-Cu nanocomposites with high adsorption capacity and photocatalytic properties were prepared via the precursor method using soluble substances isolated from urban biowaste (BBS) as carbon sources and different temperatures of the pyrolysis treatment (400, 600, and 800 °C). BBS is used as complexing agent for the Fe3+ and Cu2+ ions in the precursors. The as-prepared magnetic materials were tested in As(III) removal processes from water. Dark experiments performed with the materials obtained at 400 and 600 °C showed excellent adsorption capacities achieving a significant uptake of 911 and 840 mg g-1 for As(III), respectively. Experiments conducted under steady-state irradiation showed a reduction of 50-71% in As(III) levels evidencing the meaningful photocatalytic capacity of Fe-Cu nanocomposites. The best photocatalytic performance was obtained for the nanocomposite synthesized at the highest pyrolysis temperature, in line with the reported trend of HO· radicals production. Transient absorption spectroscopy experiments revealed the occurrence of an alternative oxidation pathway involving the valence band holes and yielded relevant kinetic information related to the early stages of the As(III) photooxidation. The higher absorption of the electron-hole pairs observed for the samples treated at lower temperature means that controlling the pyrolysis temperature during the synthesis of the Fe-Cu nanocomposites allows tuning the photocatalyst activity for oxidation of substrates via valence band holes, or via HO· radicals.

4.
Membranes (Basel) ; 11(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34564531

RESUMO

The development of a low-cost and environmentally-friendly procedure for the fabrication of silicon carbide (SiC) membranes while achieving good membrane performance is an important goal, but still a big challenge. To address this challenge, herein, a colloidal coating suspension of sub-micron SiC powders was prepared in aqueous media by employing aluminum nitrate nonahydrate as a sintering additive and was used for the deposition of a novel SiC membrane layer onto a SiC tubular support by dip-coating. The sintering temperature influence on the structural morphology was studied. Adding aluminum nitrate nonahydrate reduced the sintering temperature of the as-prepared membrane compared to conventional SiC membrane synthesis. Surface morphology, pore size distribution, crystalline structure, and chemical and mechanical stability of the membrane were characterized. The membrane showed excellent corrosion resistance in acidic and basic medium for 30 days with no significant changes in membrane properties. The pure water permeance of the membrane was measured as 2252 L h-1 m-2 bar-1. Lastly, the final membrane with 0.35 µm mean pore size showed high removal of oil droplets (99.7%) in emulsified oil-in-water with outstanding permeability. Hence, the new SiC membrane is promising for several industrial applications in the field of wastewater treatment.

5.
Membranes (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34436402

RESUMO

Due to progressive limitation of access to clean drinkable water, it is nowadays a priority to find an effective method of water purification from those emerging organic contaminants, which might have potentially harmful and irreversible effects on living organisms and environment. This manuscript reports the development of a new strategy for water purification, which combines a novel and recently developed Al2O3-doped silica nanofiltration membrane with a thermocatalytic perovskite, namely cerium-doped strontium ferrate (CSF). The thermocatalytic activity of CSF offers the opportunity to degrade organic pollutants with no light and without input of chemical oxidants, providing simplicity of operation. Moreover, our studies on real samples of secondary effluent from wastewater treatment showed that the thermocatalyst has the ability to degrade also part of the non-toxic organic matter, which allows for reducing the chemical oxygen demand of the retentate and mitigating membrane fouling during filtration. Therefore, the new technology is effective in the production of clean feed and permeate and has a potential to be used in degradation of micropollutants in water treatment.

6.
Nanomaterials (Basel) ; 10(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105670

RESUMO

The alkali-activation method allows for obtaining highly porous carbon materials. In this study, we explored the effect of activation temperature and potassium hydroxide concentration on the pore structure of reduced graphene oxide (rGO), as potential membrane material. Above 700 °C, potassium species react with the carbon plane of rGO to form nanopores. This activation process is deeply studied through DSC measurements and isothermal gravimetric analysis. The porosity of the formed materials consists of both micro- and mesopores, with most of the pores having a size smaller than 10 nm. The specific surface area and pore volume increase with increasing the potassium hydroxide/graphene oxide weight ratio (KOH/GO) up to 7 (897 m2∙g-1 and 0.97 cm3∙g-1, respectively). However, for a synthesis mixture with KOH/GO of 10, the specific surface area of the produced material drops to 255 m2∙g-1. The film-forming ability of the porous reduced graphene oxide (PRGO) was tested by drop-casting on porous silicon carbide substrates. In this case, continuous PRGO films were obtained only from dispersions with 5 g∙L-1 GO loading and KOH/GO ≤3. Such films can still have high specific surface area and pore volume (up to 528 m2∙g-1 and 0.53 cm3∙g-1) and main pore volume <10 nm. Hence, they can potentially be applied as membrane devices, but their scalability and their adhesion on the substrate under realistic filtration conditions still remain challenges.

7.
Nanomaterials (Basel) ; 10(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882979

RESUMO

Some of the groundwater aquifers in the Puglia Region, Italy, suffer from high salinity and potential micropollutant contamination due to seawater infiltration and chemical discharge. The objective of this study is twofold: to evaluate the performance of the recently reported alumina-doped silica nanofiltration membranes for water potabilization, and to provide a possible solution to improve the groundwater quality in the Puglia Region while maintaining a low energy-footprint. Two lab-made alumina-doped silica membranes with different pore structures, namely S/O = 0.5 and S/O = 2, were tested with real groundwater samples and their performances were compared with those of a commercial polymeric membrane (Dow NF90). Moreover, groundwater samples were sparked with acetamiprid, imidacloprid, and thiacloprid to test the membrane performance in the presence of potential contamination by pesticides. At a trans-membrane pressure of 5 bar, NF90 could reduce the groundwater conductivity from 4.6 to around 1.3 mS·cm-1 and reject 56-85% of the model pesticides, with a permeate flux of 14.2 L·m-2·h-1. The two inorganic membranes S/O = 2 and S/O = 0.5 reduced the permeate conductivity to 3.8 and 2.4 mS·cm-1, respectively. The specific energy consumption for all three membranes was below 0.2 kWh·m-3 which indicates that the potabilization of this groundwater by nanofiltration is commercially feasible.

8.
Nanomaterials (Basel) ; 10(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785060

RESUMO

We describe the performance of graphene oxide (GO) membranes stabilized by crosslinkers and supported on polyethersulfone films in the dehydration of ethanol in a continuous cross-flow pervaporation set-up. We used two crosslinker species with branched structures (humic acid-like substances derived from urban waste and a synthetic hyperbranched polyol). The supported crosslinked GO films were prepared by rod coating on a polyethersulfone ultrafiltration membrane. Pervaporation experiments were carried out at temperatures of 40, 50, 60 and 70 °C. When the feed comprised pure water and ethanol, a much higher flux of water than ethanol was observed at all temperatures through GO films stabilized by the two crosslinkers (humic acid, GO-HAL, and the synthetic hyperbranched polyol, GO-HBPO), indicating the separation ability of these crosslinked membranes. For feed mixtures of water and ethanol, the GO-HAL and GO-HBPO membranes showed good separation performances by producing permeates with a significantly higher water content than the feed at all temperatures.

9.
Nanomaterials (Basel) ; 9(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554232

RESUMO

Surfactant-templated 5 mol% Al2O3-doped silica membranes nanofiltration membranes were synthesized via the sol-gel method, and afterward, were optimized, and tested with respect to the permeability and rejection rate. The disordered silica network was stabilized by doping 5 mol% alumina. Tetraethyl orthosilicate and aluminum isopropoxide were used as the silica and alumina precursors, respectively. Cetyltrimethylammonium bromide (CTAB) was used not only as a pore-forming agent, but also to control the reaction rate of the aluminum isopropoxide, thus obtaining highly homogeneous materials. The results about filtration of model solutions showed that the optimized membranes are featured by both a relatively high water permeability (1.1-2.3 L·m-2·h-1 ·bar-1) and a high rejection for salts (74% for NaCl, and >95% for MgSO4 and Na2SO4) and organic pollutants (e.g., about 98% for caffeine). High rejection of divalent ions and organic molecules was also observed when a real wastewater effluent was filtered. The influence of the synthesis conditions on the membrane performance is discussed.

10.
Nanomaterials (Basel) ; 9(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412633

RESUMO

Hydrophilic silicon carbide was modified by surface deposition of a super-hydrophobic coating that is based on perfluorosilanes. The modification was proven to yield membrane surfaces with contact angles that were higher than 145° and to be stable under hydrothermal conditions. The measurement of the isosteric heat of adsorption of water and toluene by microgravimetry showed that, after modification, the membrane material was fully covered by a low-energy surface, which is consistent with the fluorocarbon moieties that were introduced by the modification. The same modification method was applied to a commercial multichannel SiC membrane tube (nominal pore size = 0.04 µm), which was tested in a direct contact membrane distillation apparatus. The membrane was permeable to water vapour and volatiles, but it showed full rejection for salt ions and organic pollutants with low vapour pressure (such as ibuprofen and caffeine). Moreover, the membrane was reusable, and its performances were stable with no sign of pore wetting over 8 h of filtration.

11.
Nanomaterials (Basel) ; 9(7)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261941

RESUMO

Hetero-photocatalytic graphene-TiO2 materials have, in the literature, been found to possess better photocatalytic activity for environmental applications compared to pure TiO2. These types of materials can be prepared in different ways; however, their photocatalytic performance and quality are not easily controlled and reproduced. Therefore, we synthetized graphene oxide-TiO2 nanoparticles by sol-gel reaction from TiCl4, as precursor, with two different methods of synthesis and with a graphene oxide (GO) loading ranging from 0 to 1.0. This approach led to a good adhesion of GO to TiO2 through the Ti-O-C bonding, which could enhance the photocatalytic performances of the materials. Overall, 0.05 wt % GO loading gave the highest rate in the photodegradation of phenol under visible light, while higher GO loadings had a negative impact on the photocatalytic performances of the composites. The 0.05 wt % GO-TiO2 composite material was confirmed to be a promising photocatalyst for water pollutant abatement. The designed synthetic approach could easily be implemented in large-scale production of the GO-TiO2 coupling materials.

12.
Chemphyschem ; 16(16): 3397-407, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26346603

RESUMO

Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels.

13.
ChemSusChem ; 4(1): 85-90, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21226216

RESUMO

Urban waste-derived bioorganic substances (UW-BOS) have shown promise as chemical auxiliaries for a number of technological applications in the chemical industry and in environmental remediation. In this study, the application of these substances in the photodegradation of organic pollutants is addressed. The experimental work is specifically focused on the photolysis mechanism promoted by AC8, a UW-BOS isolated from a 2:1 w/w mixture of food and green residues, composted for 110 days, using 4-chlorophenol (4-CP) as probe molecule. The production of (⋅)OH and the ¹O2 is monitored by EPR spectroscopy. The correlation between radical species evolution and photodegradation of 4-CP is investigated. The effect of ¹O2 and (⋅)OH scavengers on the 4-CP degradation process is also checked. The results suggest that the role of these species in the photodegradation of 4-CP depends on AC8 concentration. AC8 is thereby proven to be a photosensitizer for applications in environmental remediation. The results on AC8 further support the use of urban bio-waste as a versatile source of chemical auxiliaries of biological origin for use in diversified applications.


Assuntos
Luz , Espécies Reativas de Oxigênio/química , Gerenciamento de Resíduos , Clorofenóis/química , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres/química , Radical Hidroxila/química , Fotólise , Superóxidos/química
14.
Waste Manag ; 31(1): 10-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20888748

RESUMO

As previous work proposed commercial expectations for soluble bio-organic substances (SBO) isolated from compost of urban food, gardening and park trimming residues as chemical auxiliaries, nine urban bio-wastes (BW) treated by aerobic and anaerobic digestion for 0-360 days were used to extract SBO and investigate source variability effects on product chemical composition and properties. The bio-wastes were collected over a 13732 km(2) area populated by 2.9 millions from 565 municipalities. The SBO were characterized by their content of different C types and functional groups and by their distribution coefficient (K(PEGW)) between polyethylene glycol and water. A significant linear correlation was found between K(PEGW) and the lipophilic/hydrophilic C ratio. The investigated SBO exhibited up to sixfold change of K(PEGW) demonstrating that BW available from densely populated urban areas are an interesting exploitable source of a wide variety of potential products for the chemical market.


Assuntos
Compostos Orgânicos/química , Eliminação de Resíduos , Resíduos/análise , Ácidos/química , Aerobiose , Anaerobiose , Biodegradação Ambiental , Resíduos de Alimentos , Compostos Orgânicos/isolamento & purificação , Solo/química , Solubilidade , Resíduos/estatística & dados numéricos
15.
Biomacromolecules ; 11(11): 3036-42, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20942483

RESUMO

Acid soluble biopolymeric substances (SBP) were isolated from different urban biowastes comprised of a range of materials available from metropolitan areas. These biowastes provided products with a chemical nature and solubility properties changing over a wide range and, thus, allowed to assess the effect of the variability of the chemical nature on molecular conformation and surface activity in water solution. For this scope, the SBP were characterized for chemical composition and molecular weight (MW) by microanalysis, potentiometric titration, (13)C NMR spectroscopy, and size exclusion chromatography (SEC) coupled with an online multiangle light scattering (MALS) detector. These materials were found to have 67-463 kg mol(-1) MW and 6-53 polydispersity index and to contain carboxylic acid and phenol groups bonded to aromatic and aliphatic C chains. An empirical parameter (LH) was calculated for use as an index of the lipophilic/hydrophilic C atoms ratio. The products solubility properties in solvents of different polarity, surface activity, power to enhance the water solubility of hydrophobic compounds, and particle size in water solution were also investigated by measurements of the products partition coefficient between polyethylene glycol and water (KPEGW) and of air-water surface tension (γ), water-hexane interfacial tension (IFT), disperse red orange dye solubility (DS), and dynamic light scattering (DLS) versus added SBP concentration (Cs). The results indicate that LH correlates well with KPEGW and with the products surface activity properties. Both γ and DS are shown to depend on Cs, although in opposite ways, that is, higher Cs values yield lower γ and higher DS values. Both DS-Cs and γ-Cs plots showed a significant slope change at approximately the same 1.8-2.5 g L(-1) Cs value. This suggested a change of molecular conformation taking place at the above Cs values. Hydrodynamic diameter values for SBP in solution at Cs ≤ 10 g L(-1) were found to range from 130 to 300 nm, consistent with their macromolecular nature. The DLS coupled to the γ data were consistent with molecules at the water-air interphase and in the bulk water phase having different conformations, but not significantly different molecular sizes. Molecular aggregates more likely form at 50-100 g L(-1) Cs. The results confirm that urban biowastes are a sustainable source of biobased products that may have real commercial perspectives.


Assuntos
Biopolímeros/isolamento & purificação , Eliminação de Resíduos , Biopolímeros/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Soluções , Propriedades de Superfície , Água/química
16.
ChemSusChem ; 3(4): 445-52, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20198679

RESUMO

A polymeric anionic biosurfactant isolated from urban bio-wastes was used as a template for fabricating silica powders of pore size ranging from 4 to 30 nm by the sol-gel reaction of tetraethylorthosilicate and 3-aminopropyltriethoxysilane at pH 5. The morphology of the synthesized silica powders was found to depend on the size and the conformation of the biosurfactant molecules or aggregates in solution. The use of waste-derived biosurfactants as templating agents reduces the fabrication costs and the environmental impact of mesoporous materials. At the same time, it encourages the upgrade of bio-wastes from a costly disposal matter to a source of chemicals and therefore, of revenue.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Dióxido de Silício/química , Tensoativos/química , Biomassa , Cidades , Oxirredução , Porosidade , Pós , Eliminação de Resíduos , Estações do Ano
17.
ChemSusChem ; 2(3): 239-47, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19229894

RESUMO

From waste came forth surfactants: Humic acid like substances isolated from 0-60 day-old compost display excellent surface activity and solvent properties. These biosurfactants were used to solubilize a dye in water below and above their critical micellar concentration. The biosurfactant unimers appear to have higher dye-solubilizing power than the corresponding micelles.Humic acid like substances isolated from compost show potential as chemical auxiliaries. In the present study, three surfactant samples were obtained from green waste composted for 0-60 days to assess aging effects of the source on the properties of the products. The surface activity, dye solubility enhancement, and chemical nature of these substances were compared. No differences in performance were established among the samples. They lower water surface tension and enhance the dye solubility upon increasing their concentration. However, the ratio of soluble dye to added surfactant is higher in the premicellar than in the postmicellar concentration region. Structural investigations indicated the humic acid like substances to be amphiphiles with molecular weights in the range of 1-3 x 10(5) g mol(-1). The surfactant samples were also compared to sodium dodecylbenzenesulfonate, polyacrylic acid, and soil and water humic substances. The results encourage the application of compost as a source of low-cost biosurfactant.


Assuntos
Cidades , Conservação dos Recursos Naturais , Solo , Tensoativos/química , Resinas Acrílicas/química , Benzenossulfonatos/química , Corantes/química , Substâncias Húmicas , Luz , Espectroscopia de Ressonância Magnética , Peso Molecular , Espalhamento de Radiação , Solubilidade , Tensão Superficial
18.
Waste Manag ; 29(1): 383-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18346886

RESUMO

A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to 4-22xcmc for SDS. The vis-a-vis comparison of the two surfactants gave the following results: in the TD case the cHAL biosurfactant at 0.4gL(-1) yields good colour intensity and equal colour uniformity as SDS at 5gL(-1), in the SW case cHAL was found to enhance CWPAH by a factor of 2-4 relative to SDS with one soil, whereas with the other soil the two surfactants behaved similarly. The Cre data, however, showed that both soils absorbed by far more SDS (68-95%) than cHAL (12-54%). The results point out intriguing technological and environmental perspectives deriving from the use of compost isolated biosurfactants in the place of synthetic surfactants.


Assuntos
Corantes/química , Recuperação e Remediação Ambiental , Eliminação de Resíduos , Solo , Tensoativos/química , Têxteis , Cidades , Conservação dos Recursos Naturais , Estrutura Molecular
19.
ChemSusChem ; 1(5): 437-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18702139

RESUMO

A sol-gel-derived microporous ceramic membrane with an exceptionally low permeability for CO(2) from gaseous streams was developed and characterized. The sols were prepared from a mixture of niobium and silicon alkoxide precursors by acid-catalyzed synthesis. Microporous films were formed by coating asymmetric gamma-alumina disks with the polymeric sol (Si/Nb=3:1), followed by calcination at 500 degrees C. The membrane consists of a 150-nm-thick layer with a Si/Nb atomic ratio of about 1.5. The single-gas permeance of small gas molecules such as H(2), CH(4), N(2), and SF(6) decreases steadily with kinetic diameter. Hydrogen, helium, and carbon dioxide follow an activated transport mechanism through the membrane. The permeance of CO(2) in this membrane is much lower than that in pure silica, and its behavior deviates strongly from the general trend observed with the other gases. This is attributed to a relatively strong interaction between CO(2) and adsorption sites in the niobia-silica membrane.


Assuntos
Dióxido de Carbono/química , Nióbio/química , Silicatos/química , Dióxido de Silício/química , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...