Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(17): 4097-4110, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38634732

RESUMO

We discuss slip bonds, catch bonds, and the tug-of-war mechanism using mathematical arguments. The aim is to explain the theoretical tool of molecular potential energy surfaces (PESs). For this, we propose simple 2-dimensional surface models to demonstrate how a molecule under an external force behaves. Examples are selectins. Catch bonds, in particular, are explained in more detail, and they are contrasted to slip bonds. We can support special two-dimensional molecular PESs for E- and L-selectin which allow the catch bond property. We demonstrate that Newton trajectories (NT) are powerful tools to describe these phenomena. NTs form the theoretical background of mechanochemistry.

2.
Chemistry ; 30(27): e202400173, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457260

RESUMO

The Wittig reaction is one of the most important processes in organic chemistry for the asymmetric synthesis of olefinic compounds. In view of the increasingly acknowledged potentiality of the electric fields in promoting reactions, here we will consider the effect of the oriented external electric field (OEEF) on the second step of Wittig reaction (i. e. the ring opening oxaphosphetane) in a model system for non-stabilized ylides. In particular, we have determined the optimal direction and strength of the electric field that should be applied to annihilate the reaction barrier of the ring opening through the polarizable molecular electric dipole (PMED) model that we have recently developed. We conclude that the application of the optimal external electric field for the oxaphosphetane ring opening favours a Bestmann-like mechanism.

3.
ChemistryOpen ; : e202400030, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441494

RESUMO

First synthesized in 1868, alizarin became one of the first synthetic dyes and was widely used as a red dye in the textile industry, making it more affordable and readily available than the traditional red dyes derived from natural sources. Despite extensive both experimental and computational analyses on the electronic effects of substituents on the shape of the visible spectrum of alizarin and alizarin Red S, no previous systematic work has been undertaken with the aim to fine tune the dominant absorption region defining its color by introducing other electron-withdrawing or electron-donor groups. For such, we have performed a comprehensive study of electronic effects of substituents in position C3 of alizarin by means of a time dependent DFT approach. These auxochromes attached to the chromophore are proven to alter both the wavelength and intensity of absorption. It is shown that the introduction of an electron-donor group in alizarin causes the transition bands to be significantly red-shifted whereas electron-withdrawing groups cause a minor blue-shifting.

4.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37724726

RESUMO

The use of oriented external electric fields (OEEFs) to promote and control chemical reactivity has motivated many theoretical and computational studies in the last decade to model the action of OEEFs on a molecular system and its effects on chemical processes. Given a reaction, a central goal in this research area is to predict the optimal OEEF (oOEEF) required to annihilate the reaction energy barrier with the smallest possible field strength. Here, we present a model rooted in catastrophe and optimum control theories that allows us to find the oOEEF for a given reaction valley in the potential energy surface (PES). In this model, the effective (or perturbed) PES of a polarizable molecular system is constructed by adding to the original, non-perturbed, PES a term accounting for the interaction of the OEEF with the intrinsic electric dipole and polarizability of the molecular system, so called the polarizable molecular electric dipole (PMED) model. We demonstrate that the oOEEF can be established by locating a point in the original PES with unique topological properties: the optimal barrier breakdown or bond-breaking point (oBBP). The essential feature of the oBBP structure is the fact that this point maintains its topological properties for all the applied OEEFs, also for the unperturbed PES, thus becoming much more relevant than the commonly used minima and transition state structures. The PMED model proposed here has been implemented in an open access package and is shown to successfully predict the oOEEF for two processes: an isomerization reaction of a cumulene derivative and the Huisgen cycloaddition reaction.

5.
J Org Chem ; 88(13): 8553-8562, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37339010

RESUMO

Organic diradicals play an important role in many fields of chemistry, biochemistry, and materials science. In this work, by means of high-level theoretical calculations, we have investigated the effect of representative chemical substituents in p-quinodimethane (pQDM) and Thiele's hydrocarbons with respect to the singlet-triplet energy gap, a feature characterizing their diradical character. We show how the nature of the substituents has a very important effect in controlling the singlet-triplet energy gap so that several compounds show diradical features in their ground electronic state. Importantly, steric effects appear to play the most determinant role for pQDM analogues, with minor effects of the substituents in the central ring. For Thiele like compounds, we found that electron-withdrawing groups in the central ring favor the quinoidal form with a low or almost null diradical character, whereas electron-donating group substituents favor the aromatic-diradical form if the electron donation does not exceed 6-π electrons. In this case, if there is an excess of electron donation, the diradical character is reduced. The electronic spectrum of these compounds is also calculated, and we predict that the most intense bands occur in the visible region, although in some cases characteristic electronic transition in the near-IR region may appear.


Assuntos
Anticorpos , Antígenos de Grupos Sanguíneos , Eletrônica , Elétrons
6.
Phys Rev Lett ; 129(18): 180402, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374669

RESUMO

Time-efficient control schemes for manipulating quantum systems are of great importance in quantum technologies, where environmental forces rapidly degrade the quality of pure states over time. In this Letter, we formulate an approach to time-optimal control that circumvents the boundary-value problem that plagues the quantum brachistochrone equation at the expense of relaxing the form of the control Hamiltonian. In this setting, a coupled system of equations, one for the control Hamiltonian and another one for the duration of the protocol, realizes an ansatz-free approach to quantum control theory. We show how driven systems, in the form of a Landau-Zener type Hamiltonian, can be efficiently maneuvered to speed up a given state transformation in a highly adiabatic manner and with a low energy cost.

7.
J Chem Theory Comput ; 18(2): 935-952, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044173

RESUMO

The use of oriented external electric fields (OEEF) as a tool to accelerate chemical reactions has recently attracted much interest. A new model to calculate the optimal OEEF of the least intensity to induce a barrierless chemical reaction path is presented. A suitable ansatz is provided by defining an effective potential energy surface (PES), which considers the unperturbed or original PES of the molecular reactive system and the action of a constant OEEF on the overall dipole moment of system. Based on a generalization of the Newton Trajectories (NT) method, it is demonstrated that the optimal OEEF can be determined upon locating a special point of the potential energy surface (PES), the so-called "optimal bond-breaking point" (optimal BBP), for which two different algorithms are proposed. At this point, the gradient of the original or unperturbed PES is an eigenvector of zero eigenvalue of the Hessian matrix of the effective PES. A thorough discussion of the geometrical aspects of the optimal BBP and the optimal OEEF is provided using a two-dimensional model, and numerical calculations of the optimal OEEF for a SN2 reaction and the 1,3-dipolar retrocycloaddition of isoxazole to fulminic acid plus acetylene reaction serve as a proof of concept. The knowledge of the orientation of optimal OEEF provides a practical way to reduce the effective barrier of a given chemical process.

8.
J Chem Theory Comput ; 17(2): 996-1007, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33464895

RESUMO

A mechanochemical reaction is a reaction induced by mechanical energy. A general accepted model for this type of reaction consists of a first-order perturbation on the associated potential energy surface (PES) of the unperturbed molecular system due to mechanical stress or pulling force. Within this theoretical framework, the so-called optimal barrier breakdown points or optimal bond breaking points (BBPs) are critical points of the unperturbed PES where the Hessian matrix has a zero eigenvector that coincides with the gradient vector. Optimal BBPs are "catastrophe points" that are particularly important because their associated gradient indicates how to optimally harness tensile forces to induce reactions by transforming a chemical reaction into a barrierless process. Building on a previous method based on a nonlinear least-squares minimization to locate BBPs (Bofill et al., J. Chem. Phys. 2017, 147, 152710-10), we propose a new algorithm to locate BBPs of any molecular system based on the Gauss-Newton method combined with the Barnes update for a nonsymmetric Jacobian matrix, which is shown to be more appropriate than the Broyden update. The efficiency of the new method is demonstrated for a multidimensional model PES and two medium size molecular systems of interest in enzymatic catalysis and mechanochemistry.

9.
Phys Chem Chem Phys ; 22(39): 22332-22341, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020767

RESUMO

There is a renewed interest in the derivation of statistical mechanics from the dynamics of closed quantum systems. A central part of this program is to understand how closed quantum systems, i.e., in the absence of a thermal bath, initialized far-from-equilibrium can share a dynamics that is typical to the relaxation towards thermal equilibrium. Equilibration dynamics has been traditionally studied with a focus on the so-called quenches of large-scale many-body systems. We consider here the equilibration of a two-dimensional molecular model system describing the double proton transfer reaction in porphine. Using numerical simulations, we show that equilibration indeed takes place very rapidly (∼200 fs) for initial states induced by pump-dump laser pulse control with energies well above the synchronous barrier. The resulting equilibration state is characterized by a strong delocalization of the probability density of the protons that can be explained, mechanistically, as the result of (i) an initial state consisting of a large superposition of vibrational states, and (ii) the presence of a very effective dephasing mechanism.

10.
J Comput Chem ; 41(7): 629-634, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31792984

RESUMO

There are works of the Maeda-Morokuma group, which propose the artificial force induced reaction (AFIR) method (Maeda et al., J. Comput. Chem. 2014, 35, 166 and 2018, 39, 233). We study this important method from a theoretical point of view. The understanding of the proposers does not use the barrier breakdown point of the AFIR parameter, which usually is half of the reaction path between the minimum and the transition state which is searched for. Based on a comparison with the theory of Newton trajectories, we could better understand the method. It allows us to follow along some reaction pathways from minimum to saddle point, or vice versa. We discuss some well-known two-dimensional test surfaces where we calculate full AFIR pathways. If one has special AFIR curves at hand, one can also study the behavior of the ansatz. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.

11.
J Chem Theory Comput ; 16(1): 811-815, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31725299

RESUMO

Recently, a work (Wolinski, K., J. Chem. Theory Comput. 2018, 14, 6306, 10.1021/acs.jctc.8b00885 ) was published in which the SEGO method (standard and enforced geometry optimization) was proposed to find new minimums on potential energy surfaces. We study this important method from a theoretical point of view. Up to now, the understanding of the proposer does not take into account the barrier breakdown point on a SEGO path being usually half of the path, which is searched for. However, a better understanding of the method allows us to follow along the reaction pathway from a minimum to a saddle point or vice versa. We discuss the well-known two-dimensional MB test surface where we calculate full SEGO pathways. If one has special SEGO curves at hand, one can also detect some weaknesses of the ansatz.

12.
J Chem Theory Comput ; 15(10): 5426-5439, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31433636

RESUMO

An algorithm to locate transition states on a potential energy surface (PES) is proposed and described. The technique is based on the GAD method where the gradient of the PES is projected into a given direction and also perpendicular to it. In the proposed method, named GAD-CD, the projection is not only applied to the gradient but also to the Hessian matrix. Then, the resulting Hessian matrix is block diagonal. The direction is updated according to the GAD method. Furthermore, to ensure stability and to avoid a high computational cost, a trust region technique is incorporated and the Hessian matrix is updated at each iteration. The performance of the algorithm in comparison with the standard ascent dynamics is discussed for a simple two dimensional model PES. Its efficiency for describing the reaction mechanisms involving small and medium size molecular systems is demonstrated for five molecular systems of interest.

13.
Phys Chem Chem Phys ; 21(21): 11395-11404, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31111125

RESUMO

We present a computational study of a reduced potential energy surface (PES) to describe enantiomerization and internal rotation in three triptycyl-n-helicene molecules, centering the discussion on the issue of a proper reaction coordinate choice. To reflect the full symmetry of both strongly coupled enantiomerization and rotation processes, two non-fixed combinations of dihedral angles must be used, implying serious computational problems that required the development of a complex general algorithm. The characteristic points on each PES are analyzed, the intrinsic reaction coordinates are calculated, and finally they are projected on the reduced PES. Unlike what was previously found for triptycyl-3-helicene, the surfaces for triptycyl-4-helicene and triptycyl-5-helicene contain valley-ridge-inflection (VRI) points. The reaction paths on the reduced surfaces are analyzed to understand the dynamical behaviour of these molecules and to evaluate the possibility of a molecule of this family exhibiting a Brownian ratchet behaviour.

14.
J Chem Phys ; 147(15): 152710, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055306

RESUMO

The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

15.
J Org Chem ; 82(17): 8909-8916, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783338

RESUMO

Quantum chemical calculations have unveiled the unexpected biradical character of titanium(IV) enolates from N-acyl oxazolidinones and thiazolidinethiones. The electronic structure of these species therefore involves a valence tautomerism consisting of an equilibrium between a closed shell (formally Ti(IV) enolates) and an open shell, biradical, singlet (formally Ti(III) enolates) electronic states, whose origin is to be basically found in changes of the Ti-O distance. Spectroscopic studies of the intermediate species lend support to such a model, which also turns out to be crucial for a better understanding of the overall reactivity of titanium(IV) enolates. In this context, a thorough computational analysis of the radical addition of titanium(IV) enolates from N-acyl oxazolidinones to TEMPO has permitted us to suggest an entire mechanism, which accounts for the experimental details and the diastereoselectivity of the process. All together, this evidence highlights the relevance of biradical intermediates from titanium(IV) enolates and may be a useful contribution to the foundations of a more insightful comprehension of the structure and reactivity of titanium(IV) enolates.

16.
J Phys Chem A ; 121(14): 2820-2838, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28338327

RESUMO

The theoretical description of a chemical process resulting from the application of mechanical or catalytical stress to a molecule is performed by the generation of an effective potential energy surface (PES). Changes for minima and saddle points by the stress are described by Newton trajectories (NTs) on the original PES. From the analysis of the acting forces we postulate the existence of pulling corridors built by families of NTs that connect the same stationary points. For different exit saddles of different height we discuss the corresponding pulling corridors; mainly by simple two-dimensional surface models. If there are different exit saddles then there can exist saddles of index two, at least, between. Then the case that a full pulling corridor crosses a saddle of index two is the normal case. It leads to an intrinsic hysteresis of such pullings for the forward or the backward reaction. Assuming such relations we can explain some results in the literature. A new finding is the existence of roundabout corridors that can switch between different saddle points by a reversion of the direction. The findings concern the mechanochemistry of molecular systems under a mechanical load as well as the electrostatic force and can be extended to catalytic and enzymatic accelerated reactions. The basic and ground ansatz includes both kinds of forces in a natural way without an extra modification.

17.
J Comput Chem ; 37(27): 2467-78, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27556915

RESUMO

If one applies mechanical stress to a molecule in a defined direction then one generates a new, effective potential energy surface (PES). Changes for minima and saddle points (SP) by the stress are described by Newton trajectories on the original PES (Quapp and Bofill, Theor. Chem. Acc. 2016, 135, 113). The barrier of a reaction fully breaks down for the maximal value of the norm of the gradient of the PES along a pulling Newton trajectory. This point is named barrier breakdown point (BBP). Depending on the pulling direction, different reaction pathways can be enforced. If the exit SP of the chosen pulling direction is not the lowest SP of the reactant valley, on the original PES, then the SPs must change their role anywhere: in this case the curve of the log(rate) over the pulling force of a forward reaction can show a deviation from the normal concave curvature. We discuss simple, two-dimensional examples for this model to understand more deeply the mechanochemistry of molecular systems under a mechanical stress. © 2016 Wiley Periodicals, Inc.

19.
J Phys Chem Lett ; 6(9): 1529-35, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26263307

RESUMO

We report a new theoretical approach to solve adiabatic quantum molecular dynamics halfway between wave function and trajectory-based methods. The evolution of a N-body nuclear wave function moving on a 3N-dimensional Born-Oppenheimer potential-energy hyper-surface is rewritten in terms of single-nuclei wave functions evolving nonunitarily on a 3-dimensional potential-energy surface that depends parametrically on the configuration of an ensemble of generally defined trajectories. The scheme is exact and, together with the use of trajectory-based statistical techniques, can be exploited to circumvent the calculation and storage of many-body quantities (e.g., wave function and potential-energy surface) whose size scales exponentially with the number of nuclear degrees of freedom. As a proof of concept, we present numerical simulations of a 2-dimensional model porphine where switching from concerted to sequential double proton transfer (and back) is induced quantum mechanically.

20.
Molecules ; 20(4): 5409-22, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25822080

RESUMO

Here the aromatic formylation mediated by TiCl4 and dichloromethyl methyl ether previously described by our group has been explored for a wide range of aromatic rings, including phenols, methoxy- and methylbenzenes, as an excellent way to produce aromatic aldehydes. Here we determine that the regioselectivity of this process is highly promoted by the coordination between the atoms present in the aromatic moiety and those in the metal core.


Assuntos
Éter Bisclorometílico/química , Hidrocarbonetos Policíclicos Aromáticos/química , Titânio/química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...