Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21730, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066070

RESUMO

Primate superior colliculus (SC) neurons exhibit visual feature tuning properties and are implicated in a subcortical network hypothesized to mediate fast threat and/or conspecific detection. However, the mechanisms through which SC neurons contribute to peripheral object detection, for supporting rapid orienting responses, remain unclear. Here we explored whether, and how quickly, SC neurons detect real-life object stimuli. We presented experimentally-controlled gray-scale images of seven different object categories, and their corresponding luminance- and spectral-matched image controls, within the extrafoveal response fields of SC neurons. We found that all of our functionally-identified SC neuron types preferentially detected real-life objects even in their very first stimulus-evoked visual bursts. Intriguingly, even visually-responsive motor-related neurons exhibited such robust early object detection. We further identified spatial frequency information in visual images as an important, but not exhaustive, source for the earliest (within 100 ms) but not for the late (after 100 ms) component of object detection by SC neurons. Our results demonstrate rapid and robust detection of extrafoveal visual objects by the SC. Besides supporting recent evidence that even SC saccade-related motor bursts can preferentially represent visual objects, these results reveal a plausible mechanism through which rapid orienting responses to extrafoveal visual objects can be mediated.


Assuntos
Neurônios , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos , Primatas , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(38): e2305759120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695898

RESUMO

Movement control is critical for successful interaction with our environment. However, movement does not occur in complete isolation of sensation, and this is particularly true of eye movements. Here, we show that the neuronal eye movement commands emitted by the superior colliculus (SC), a structure classically associated with oculomotor control, encompass a robust visual sensory representation of eye movement targets. Thus, similar saccades toward different images are associated with different saccade-related "motor" bursts. Such sensory tuning in SC saccade motor commands appeared for all image manipulations that we tested, from simple visual features to real-life object images, and it was also strongest in the most motor neurons in the deeper collicular layers. Visual-feature discrimination performance in the motor commands was also stronger than in visual responses. Comparing SC motor command feature discrimination performance to that in the primary visual cortex during steady-state gaze fixation revealed that collicular motor bursts possess a reliable perisaccadic sensory representation of the peripheral saccade target's visual appearance, exactly when retinal input is expected to be most uncertain. Our results demonstrate that SC neuronal movement commands likely serve a fundamentally sensory function.


Assuntos
Movimentos Oculares , Movimento , Neurônios Motores , Movimentos Sacádicos , Discriminação Psicológica
3.
Annu Rev Vis Sci ; 9: 361-383, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040792

RESUMO

The superior colliculus (SC) is a subcortical brain structure that is relevant for sensation, cognition, and action. In nonhuman primates, a rich history of studies has provided unprecedented detail about this structure's role in controlling orienting behaviors; as a result, the primate SC has become primarily regarded as a motor control structure. However, as in other species, the primate SC is also a highly visual structure: A fraction of its inputs is retinal and complemented by inputs from visual cortical areas, including the primary visual cortex. Motivated by this, recent investigations are revealing the rich visual pattern analysis capabilities of the primate SC, placing this structure in an ideal position to guide orienting movements. The anatomical proximity of the primate SC to both early visual inputs and final motor control apparatuses, as well as its ascending feedback projections to the cortex, affirms an important role for this structure in active perception.


Assuntos
Colículos Superiores , Córtex Visual , Animais , Visão Ocular , Retina , Primatas
4.
J Neurosci ; 42(50): 9356-9371, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36319117

RESUMO

Visual processing is segregated into ON and OFF channels as early as in the retina, and the superficial (output) layers of the primary visual cortex (V1) are dominated by neurons preferring dark stimuli. However, it is not clear how the timing of neural processing differs between "darks" and "brights" in general, especially in light of psychophysical evidence; it is also equally not clear how subcortical visual pathways that are critical for active orienting represent stimuli of positive (luminance increments) and negative (luminance decrements) contrast polarity. Here, we recorded from all visually-responsive neuron types in the superior colliculus (SC) of two male rhesus macaque monkeys. We presented a disk (0.51° radius) within the response fields (RFs) of neurons, and we varied, across trials, stimulus Weber contrast relative to a gray background. We also varied contrast polarity. There was a large diversity of preferences for darks and brights across the population. However, regardless of individual neural sensitivity, most neurons responded significantly earlier to dark than bright stimuli. This resulted in a dissociation between neural preference and visual response onset latency: a neuron could exhibit a weaker response to a dark stimulus than to a bright stimulus of the same contrast, but it would still have an earlier response to the dark stimulus. Our results highlight an additional candidate visual neural pathway for explaining behavioral differences between the processing of darks and brights, and they demonstrate the importance of temporal aspects in the visual neural code for orienting eye movements.SIGNIFICANCE STATEMENT Objects in our environment, such as birds flying across a bright sky, often project shadows (or images darker than the surround) on our retina. We studied how primate superior colliculus (SC) neurons visually process such dark stimuli. We found that the overall population of SC neurons represented both dark and bright stimuli equally well, as evidenced by a relatively equal distribution of neurons that were either more or less sensitive to darks. However, independent of sensitivity, the great majority of neurons detected dark stimuli earlier than bright stimuli, evidenced by a smaller response latency for the dark stimuli. Thus, SC neural response latency can be dissociated from response sensitivity, and it favors the faster detection of dark image contrasts.


Assuntos
Colículos Superiores , Vias Visuais , Animais , Masculino , Colículos Superiores/fisiologia , Macaca mulatta , Estimulação Luminosa , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia
5.
Neuron ; 109(4): 690-699.e5, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33338395

RESUMO

Recent fMRI experiments identified an attention-related region in the macaque temporal cortex, here called the floor of the superior temporal sulcus (fSTS), as the primary cortical target of superior colliculus (SC) activity. However, it remains unclear which aspects of attention are processed by fSTS neurons and how or why these might depend on SC activity. Here, we show that SC inactivation decreases attentional modulations in fSTS neurons by increasing their activity for ignored stimuli in addition to decreasing their activity for attended stimuli. Neurons in the fSTS also exhibit event-related activity during attention tasks linked to detection performance, and this link is eliminated during SC inactivation. Finally, fSTS neurons respond selectively to particular visual objects, and this selectivity is reduced markedly during SC inactivation. These diverse, high-level properties of fSTS neurons all involve visual signals that carry behavioral relevance. Their dependence on SC activity could reflect a circuit that prioritizes cortical processing of events detected subcortically.


Assuntos
Atenção/fisiologia , Mesencéfalo/fisiologia , Lobo Temporal/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino , Mesencéfalo/diagnóstico por imagem , Estimulação Luminosa/métodos , Lobo Temporal/diagnóstico por imagem
6.
J Neurosci ; 40(49): 9496-9506, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127854

RESUMO

Covert and overt spatial selection behaviors are guided by both visual saliency maps derived from early visual features as well as priority maps reflecting high-level cognitive factors. However, whether mid-level perceptual processes associated with visual form recognition contribute to covert and overt spatial selection behaviors remains unclear. We hypothesized that if peripheral visual forms contribute to spatial selection behaviors, then they should do so even when the visual forms are task-irrelevant. We tested this hypothesis in male and female human subjects as well as in male macaque monkeys performing a visual detection task. In this task, subjects reported the detection of a suprathreshold target spot presented on top of one of two peripheral images, and they did so with either a speeded manual button press (humans) or a speeded saccadic eye movement response (humans and monkeys). Crucially, the two images, one with a visual form and the other with a partially phase-scrambled visual form, were completely irrelevant to the task. In both manual (covert) and oculomotor (overt) response modalities, and in both humans and monkeys, response times were faster when the target was congruent with a visual form than when it was incongruent. Importantly, incongruent targets were associated with almost all errors, suggesting that forms automatically captured selection behaviors. These findings demonstrate that mid-level perceptual processes associated with visual form recognition contribute to covert and overt spatial selection. This indicates that neural circuits associated with target selection, such as the superior colliculus, may have privileged access to visual form information.SIGNIFICANCE STATEMENT Spatial selection of visual information either with (overt) or without (covert) foveating eye movements is critical to primate behavior. However, it is still not clear whether spatial maps in sensorimotor regions known to guide overt and covert spatial selection are influenced by peripheral visual forms. We probed the ability of humans and monkeys to perform overt and covert target selection in the presence of spatially congruent or incongruent visual forms. Even when completely task-irrelevant, images of visual objects had a dramatic effect on target selection, acting much like spatial cues used in spatial attention tasks. Our results demonstrate that traditional brain circuits for orienting behaviors, such as the superior colliculus, likely have privileged access to visual object representations.


Assuntos
Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Animais , Feminino , Fixação Ocular , Percepção de Forma/fisiologia , Humanos , Macaca mulatta , Masculino , Orientação Espacial/fisiologia , Estimulação Luminosa , Desempenho Psicomotor , Tempo de Reação/fisiologia , Reconhecimento Psicológico , Movimentos Sacádicos/fisiologia
7.
Curr Biol ; 29(5): 726-736.e4, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773369

RESUMO

Spatial neglect is a common clinical syndrome involving disruption of the brain's attention-related circuitry, including the dorsocaudal temporal cortex. In macaques, the attention deficits associated with neglect can be readily modeled, but the absence of evidence for temporal cortex involvement has suggested a fundamental difference from humans. To map the neurological expression of neglect-like attention deficits in macaques, we measured attention-related fMRI activity across the cerebral cortex during experimental induction of neglect through reversible inactivation of the superior colliculus and frontal eye fields. During inactivation, monkeys exhibited hallmark attentional deficits of neglect in tasks using either motion or non-motion stimuli. The behavioral deficits were accompanied by marked reductions in fMRI attentional modulation that were strongest in a small region on the floor of the superior temporal sulcus; smaller reductions were also found in frontal eye fields and dorsal parietal cortex. Notably, direct inactivation of the mid-superior temporal sulcus (STS) cortical region identified by fMRI caused similar neglect-like spatial attention deficits. These results identify a putative macaque homolog to temporal cortex structures known to play a central role in human neglect.


Assuntos
Atenção/fisiologia , Macaca mulatta/fisiologia , Lobo Temporal/fisiologia , Animais , Macaca mulatta/psicologia , Imageamento por Ressonância Magnética , Masculino
8.
Sci Rep ; 8(1): 15237, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323289

RESUMO

Neurophysiological studies of covert visual attention in monkeys have emphasized the modulation of sensory neural responses in the visual cortex. At the same time, electrophysiological correlates of attention have been reported in other cortical and subcortical structures, and recent fMRI studies have identified regions across the brain modulated by attention. Here we used fMRI in two monkeys performing covert attention tasks to reproduce and extend these findings in order to help establish a more complete list of brain structures involved in the control of attention. As expected from previous studies, we found attention-related modulation in frontal, parietal and visual cortical areas as well as the superior colliculus and pulvinar. We also found significant attention-related modulation in cortical regions not traditionally linked to attention - mid-STS areas (anterior FST and parts of IPa, PGa, TPO), as well as the caudate nucleus. A control experiment using a second-order orientation stimulus showed that the observed modulation in a subset of these mid-STS areas did not depend on visual motion. These results identify the mid-STS areas (anterior FST and parts of IPa, PGa, TPO) and caudate nucleus as potentially important brain regions in the control of covert visual attention in monkeys.


Assuntos
Atenção/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Movimentos Oculares/fisiologia , Córtex Visual/anatomia & histologia , Percepção Visual/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Córtex Visual/fisiologia
9.
Nat Commun ; 9(1): 3553, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177726

RESUMO

The causal roles of the frontal eye fields (FEF) and superior colliculus (SC) in spatial selective attention have not been directly compared. Reversible inactivation is an established method for testing causality but comparing results between FEF and SC is complicated by differences in size and morphology of the two brain regions. Here we exploited the fact that inactivation of FEF and SC also changes the metrics of saccadic eye movements, providing an independent benchmark for the strength of the causal manipulation. Using monkeys trained to covertly perform a visual motion-change detection task, we found that inactivation of either FEF or SC could cause deficits in attention task performance. However, SC-induced attention deficits were found with saccade changes half the size needed to get FEF-induced attention deficits. Thus, performance in visual attention tasks is vulnerable to loss of signals from either structure, but suppression of SC activity has a more devastating effect.


Assuntos
Atenção/fisiologia , Lobo Frontal/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Espacial/fisiologia , Colículos Superiores/fisiologia , Animais , Atenção/efeitos dos fármacos , Estimulação Elétrica , Lobo Frontal/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Macaca mulatta , Muscimol/farmacologia , Desempenho Psicomotor , Movimentos Sacádicos/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Colículos Superiores/efeitos dos fármacos
10.
Cortex ; 102: 161-175, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28958417

RESUMO

Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.


Assuntos
Neocórtex/fisiologia , Orientação/fisiologia , Colículos Superiores/fisiologia , Tálamo/fisiologia , Animais , Evolução Biológica , Humanos , Neurônios/fisiologia
11.
J Vis ; 15(6): 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047359

RESUMO

Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention.


Assuntos
Percepção de Cores/fisiologia , Sinais (Psicologia) , Processamento Espacial/fisiologia , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicofísica , Tempo de Reação
12.
J Vis ; 13(13): 5, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24190910

RESUMO

Due to the aperture problem, the initial direction of tracking responses to a translating bar is biased towards the direction orthogonal to the bar. This observation offers a powerful way to explore the interactions between retinal and extraretinal signals in controlling our actions. We conducted two experiments to probe these interactions by briefly (200 and 400 ms) blanking the moving target (45° or 135° tilted bar) during steady state (Experiment 1) and at different moments during the early phase of pursuit (Experiment 2). In Experiment 1, we found a marginal but statistically significant directional bias on target reappearance for all subjects in at least one blank condition (200 or 400 ms). In Experiment 2, no systematic significant directional bias was observed at target reappearance after a blank. These results suggest that the weighting of retinal and extraretinal signals is dynamically modulated during the different phases of pursuit. Based on our previous theoretical work on motion integration, we propose a new closed-loop two-stage recurrent Bayesian model where retinal and extraretinal signals are dynamically weighted based on their respective reliabilities and combined to compute the visuomotor drive. With a single free parameter, the model reproduces many aspects of smooth pursuit observed across subjects during and immediately after target blanking. It provides a new theoretical framework to understand how different signals are dynamically combined based on their relative reliability to adaptively control our actions. Overall, the model and behavioral results suggest that human subjects rely more strongly on prediction during the early phase than in the steady state phase of pursuit.


Assuntos
Percepção de Movimento/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Retina/fisiologia , Vias Visuais/fisiologia , Adulto , Teorema de Bayes , Movimentos Oculares , Humanos , Reprodutibilidade dos Testes
13.
Vision Res ; 51(8): 867-80, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20974165

RESUMO

Accuracy in estimating an object's global motion over time is not only affected by the noise in visual motion information but also by the spatial limitation of the local motion analyzers (aperture problem). Perceptual and oculomotor data demonstrate that during the initial stages of the motion information processing, 1D motion cues related to the object's edges have a dominating influence over the estimate of the object's global motion. However, during the later stages, 2D motion cues related to terminators (edge-endings) progressively take over, leading to a final correct estimate of the object's global motion. Here, we propose a recursive extension to the Bayesian framework for motion processing (Weiss, Simoncelli, & Adelson, 2002) cascaded with a model oculomotor plant to describe the dynamic integration of 1D and 2D motion information in the context of smooth pursuit eye movements. In the recurrent Bayesian framework, the prior defined in the velocity space is combined with the two independent measurement likelihood functions, representing edge-related and terminator-related information, respectively to obtain the posterior. The prior is updated with the posterior at the end of each iteration step. The maximum-a posteriori (MAP) of the posterior distribution at every time step is fed into the oculomotor plant to produce eye velocity responses that are compared to the human smooth pursuit data. The recurrent model was tuned with the variance of pursuit responses to either "pure" 1D or "pure" 2D motion. The oculomotor plant was tuned with an independent set of oculomotor data, including the effects of line length (i.e. stimulus energy) and directional anisotropies in the smooth pursuit responses. The model not only provides an accurate qualitative account of dynamic motion integration but also a quantitative account that is close to the smooth pursuit response across several conditions (three contrasts and three speeds) for two human subjects.


Assuntos
Teorema de Bayes , Movimentos Oculares/fisiologia , Percepção de Movimento/fisiologia , Ilusões Ópticas/fisiologia , Humanos , Modelos Biológicos , Neurônios/fisiologia , Acompanhamento Ocular Uniforme/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...