Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30815397

RESUMO

Toxoplasma gondii is an apicomplexan protozoan parasite with a complex life cycle composed of multiple stages that infect mammals and birds. Tachyzoites rapidly replicate within host cells to produce acute infection during which the parasite disseminates to tissues and organs. Highly replicative cells are subject to Double Strand Breaks (DSBs) by replication fork collapse and ATM, a member of the phosphatidylinositol 3-kinase (PI3K) family, is a key factor that initiates DNA repair and activates cell cycle checkpoints. Here we demonstrate that the treatment of intracellular tachyzoites with the PI3K inhibitor caffeine or ATM kinase-inhibitor KU-55933 affects parasite replication rate in a dose-dependent manner. KU-55933 affects intracellular tachyzoite growth and induces G1-phase arrest. Addition of KU-55933 to extracellular tachyzoites also leads to a significant reduction of tachyzoite replication upon infection of host cells. ATM kinase phosphorylates H2A.X (γH2AX) to promote DSB damage repair. The level of γH2AX increases in tachyzoites treated with camptothecin (CPT), a drug that generates fork collapse, but this increase was not observed when co-administered with KU-55933. These findings support that KU-55933 is affecting the Toxoplasma ATM-like kinase (TgATM). The combination of KU-55933 and other DNA damaging agents such as methyl methane sulfonate (MMS) and CPT produce a synergic effect, suggesting that TgATM kinase inhibition sensitizes the parasite to damaged DNA. By contrast, hydroxyurea (HU) did not further inhibit tachyzoite replication when combined with KU-55933.


Assuntos
Antiprotozoários/farmacologia , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Sinergismo Farmacológico
2.
Front Microbiol ; 7: 627, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199954

RESUMO

Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance which causes toxoplasmosis in humans. Great effort is currently being devoted toward the identification of novel drugs capable of targeting such illness. In this context, we believe that the thorough understanding of the life cycle of this model parasite will facilitate the identification of new druggable targets in T. gondii. It is important to exploit the available knowledge of pathways which could modulate the sensitivity of the parasite to DNA damaging agents. The homologous recombination repair (HRR) pathway may be of particular interest in this regard as its inactivation sensitizes other cellular models such as human cancer to targeted therapy. Herein we discuss the information available on T. gondii's HRR pathway from the perspective of its conservation with respect to yeast and humans. Special attention was devoted to BRCT domain-containing and end-resection associated proteins in T. gondii as in other experimental models such proteins have crucial roles in early/late steps or HRR and in the pathway choice for double strand break resolution. We conclude that T. gondii HRR pathway is a source of several lines of investigation that allow to to comprehend the extent of diversification of HRR in T. gondii. Such an effort will serve to determine if HRR could represent a potential targer for the treatment of toxoplasmosis.

3.
Mol Biochem Parasitol ; 197(1-2): 36-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286383

RESUMO

Histone H2Ba of Toxoplasma gondii was expressed as recombinant protein (rH2Ba) and used to generate antibody in mouse that is highly specific. Antibody recognizing rH2Ba detects a single band in tachyzoite lysate of the expected molecular weight (12kDa). By indirect immunofluorescence (IFA) in in vitro grown tachyzoites and bradyzoites, the signal was detected only in the parasite nucleus. The nucleosome composition of H2Ba was determined through co-immunoprecipitation assays. H2Ba was detected in the same immunocomplex as H2A.X, but not with H2A.Z. Through chromatin immunoprecipitation (ChIP) assays and qPCR, it was observed that H2Ba is preferentially located at promoters of inactive genes and silent regions, accompanying H2A.X and opposed to H2A.Z/H2B.Z dimers.


Assuntos
Genoma de Protozoário , Histonas/genética , Toxoplasma/genética , Anticorpos Monoclonais/imunologia , Imunoprecipitação da Cromatina , Histonas/química , Histonas/imunologia , Histonas/metabolismo , Modelos Biológicos , Nucleossomos/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
4.
Expert Rev Anti Infect Ther ; 10(10): 1189-201, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23199404

RESUMO

Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite.


Assuntos
Histonas/metabolismo , Toxoplasma/genética , Toxoplasmose/tratamento farmacológico , Acetilação , Sequência de Aminoácidos , Antiparasitários/uso terapêutico , Cromatina/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/química , Humanos , Dados de Sequência Molecular , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Toxoplasmose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...