Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131976

RESUMO

The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.

2.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003413

RESUMO

Proteins can lose native functionality due to non-physiological aggregation. In this work, we have shown the power of sulfated polysaccharides as a natural assistant to restore damaged protein structures. Protein aggregates enriched by cross-ß structures are a characteristic of amyloid fibrils related to different health disorders. Our recent studies demonstrated that model fibrils of hen egg white lysozyme (HEWL) can be disaggregated and renatured by some negatively charged polysaccharides. In the current work, using the same model protein system and FTIR spectroscopy, we studied the role of conformation and charge distribution along the polysaccharide chain in the protein secondary structure conversion. The effects of three carrageenans (κ, ι, and λ) possessing from one to three sulfate groups per disaccharide unit were shown to be different. κ-Carrageenan was able to fully eliminate cross-ß structures and complete the renaturation process. ι-Carrageenan only initiated the formation of native-like ß-structures in HEWL, retaining most of the cross-ß structures. In contrast, λ-carrageenan even increased the content of amyloid cross-ß structures. Furthermore, κ-carrageenan in rigid helical conformation loses its capability to restore protein native structures, largely increasing the amount of amyloid cross-ß structures. Our findings create a platform for the design of novel natural chaperons to counteract protein unfolding.


Assuntos
Agregados Proteicos , Sulfatos , Carragenina/farmacologia , Carragenina/química , Polissacarídeos/farmacologia , Amiloide/química
3.
Polymers (Basel) ; 14(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236018

RESUMO

During the last few decades, polysaccharide hydrogels attract more and more attention as therapeutic protein delivery systems due to their biocompatibility and the simplicity of the biodegradation of natural polymers. The protein retention by and release from the polysaccharide gel network is regulated by geometry and physical interactions of protein with the matrix. In the present work, we studied the molecular details of interactions between κ-carrageenan and three lipases, namely the lipases from Candida rugosa, Mucor javanicus, and Rhizomucor miehei-which differ in their size and net charge-upon protein immobilization in microparticles of polysaccharide gel. The kinetics of protein release revealed the different capability of κ-carrageenan to retain lipases, which are generally negatively charged; that was shown to be in line with the energy of interactions between polysaccharides and positively charged epitopes on the protein surface. These data create a platform for the novel design of nanocarriers for biomedical probes of enzymatic origin.

4.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746037

RESUMO

To deliver therapeutic proteins into a living body, it is important to maintain their target activity in the gastrointestinal tract after oral administration. Secreted ribonuclease from Bacillus pumilus (binase) has antitumor and antiviral activity, which makes it a promising therapeutic agent. This globular protein of small molecular weight (12.2 kDa) is considered as a potential agent that induces apoptosis of tumor cells expressing certain oncogenes, including colorectal and duodenum cancer. The most important problem of its usage is the preservation of its structure and target activity, which could be lost during oral administration. Here, we developed alginate microspheres reinforced with divalent cations and analyzed the enzyme release from them. Using methods of scanning electron microscopy, measurements of fluorescence, enzyme catalytic activity, and determination of viability of the duodenum adenocarcinoma tumor cell line, we characterized obtained microspheres and chose calcium as a biogenic ion-strengthening microsphere structure. Among such modified additivities as beta-casein, gelatin, and carbon nanotubes introduced into microspheres, only gelatin showed a pronounced increase in their stability and provided data on the prolonged action of enzyme release from microspheres into tumor cell culture medium during 48 h in an amount of about 70% of the loaded quantity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...