Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e10998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450315

RESUMO

Information about species distributions is lacking in many regions of the world, forcing resource managers to answer complex ecological questions with incomplete data. Information gaps are compounded by climate change, driving ecological bottlenecks that can act as new demographic constraints on fauna. Here, we construct greater sandhill crane (Antigone canadensis tabida) summering range in western North America using movement data from 120 GPS-tagged individuals to determine how landscape composition shaped their distributions. Landscape variables developed from remotely sensed data were combined with bird locations to model distribution probabilities. Additionally, land-use and ownership were summarized within summer range as a measure of general bird use. Wetland variables identified as important predictors of bird distributions were evaluated in a post hoc analysis to measure long-term (1984-2022) effects of climate-driven surface water drying. Wetlands and associated agricultural practices accounted for 1.2% of summer range but were key predictors of occurrence. Bird distributions were structured by riparian floodplains that concentrated wetlands, and flood-irrigated agriculture in otherwise arid and semi-arid landscapes. Findings highlighted the role of private lands in greater sandhill crane ecology as they accounted for 78% of predicted distributions. Wetland drying observed in portions of the range from 1984 to 2022 represented an emerging ecological bottleneck that could limit future greater sandhill crane summer range. Study outcomes provide novel insight into the significance of ecosystem services provided by flood-irrigated agriculture that supported nearly 60% of wetland resources used by birds. Findings suggest greater sandhill cranes function as a surrogate species for agroecology and climate change adaptation strategies seeking to reduce agricultural water use through improved efficiency while also maintaining distinct flood-irrigation practices supporting greater sandhill cranes and other wetland-dependent wildlife. We make our wetland and sandhill crane summering distributions available as interactive web-based mapping tools to inform conservation design.

2.
PLoS One ; 13(11): e0206222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403712

RESUMO

River ecosystems in semi-arid environments provide an array of resources that concentrate biodiversity, but also attract human settlement and support economic development. In the southwestern United States, land-use change, drought, and anthropogenic disturbance are compounding factors which have led to departures from historical conditions of river ecosystems, consequently affecting wildlife habitat, including important wintering areas for migratory birds. The Rio Grande (River) in central New Mexico is the lifeblood of the Middle Rio Grande Valley (MRGV), maintaining large urban and agricultural centers and riparian and wetland resources, which disproportionately support a diversity of wildlife. The MRGV has been identified as the most important wintering area for the Rocky Mountain Population of greater sandhill cranes (Antigone canadensis tabida). Presently, however, changes in the hydrogeomorphology of the Rio Grande and landscape modification by humans have reshaped the MRGV and winter habitat for sandhill cranes. To evaluate these impacts, we investigated how land-use practices, anthropogenic disturbance, and river morphology influenced patterns of diurnal and roosting habitat selection by sandhill cranes. During the diurnal period, sandhill cranes relied heavily on managed public lands selecting agriculture crops, such as corn fields, and wetlands for foraging and loafing while avoiding areas with increasing densities of human structures. Sandhill cranes selected areas for roosting in the Rio Grande characterized by shallower water interspersed with sandbars, wide channel width, low bank vegetation, and farther away from disturbances associated with bridges. Our results establish and identify the central processes driving patterns of diel habitat selection by wintering sandhill cranes. Land use and riverine trends have likely gradually reduced winter habitat to managed public lands and limited reaches of the Rio Grande, underscoring the importance of natural resources agencies in supporting migratory birds and challenges involved when managing for wildlife in highly pressured semi-arid environments.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Atividades Humanas , Estações do Ano , Animais , Comportamento Animal , Ritmo Circadiano/fisiologia , Geografia , Humanos , Modelos Logísticos , Modelos Teóricos , New Mexico , Probabilidade , Comunicações Via Satélite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...