Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Coll Cardiol ; 76(6): 684-699, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32762903

RESUMO

BACKGROUND: Myocardial damage due to acute ST-segment elevation myocardial infarction (STEMI) remains a significant global health problem. New approaches to limit myocardial infarct size and reduce progression to heart failure after STEMI are needed. Mechanically reducing left ventricular (LV) workload (LV unloading) before coronary reperfusion is emerging as a potential approach to reduce infarct size. OBJECTIVES: Given the central importance of mitochondria in reperfusion injury, we hypothesized that compared with immediate reperfusion (IR), LV unloading before reperfusion improves myocardial energy substrate use and preserves mitochondrial structure and function. METHODS: To explore the effect of LV unloading duration on infarct size, we analyzed data from the STEMI-Door to Unload (STEMI-DTU) trial and then tested the effect of LV unloading on ischemia and reperfusion injury, cardiac metabolism, and mitochondrial function in swine models of acute myocardial infarction. RESULTS: The duration of LV unloading before reperfusion was inversely associated with infarct size in patients with large anterior STEMI. In preclinical models, LV unloading reduced the expression of hypoxia-sensitive proteins and myocardial damage due to ischemia alone. LV unloading with a transvalvular pump (TV-P) but not with venoarterial extracorporeal membrane oxygenation (ECMO) reduced infarct size. Using unbiased and blinded metabolic profiling, TV-P improved myocardial energy substrate use and preserved mitochondrial structure including cardiolipin content after reperfusion compared with IR or ECMO. Functional testing in mitochondria isolated from the infarct zone showed an intact mitochondrial structure including cardiolipin content, preserved activity of the electron transport chain including mitochondrial complex I, and reduced oxidative stress with TV-P-supported reperfusion but not with IR or ECMO. CONCLUSIONS: These novel findings identify that transvalvular unloading limits ischemic injury before reperfusion, improves myocardial energy substrate use, and preserves mitochondrial structure and function after reperfusion.


Assuntos
Reperfusão Miocárdica/métodos , Cuidados Pré-Operatórios/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Animais , Valvas Cardíacas , Ventrículos do Coração/fisiopatologia , Coração Auxiliar , Masculino , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...