Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Accid Anal Prev ; 136: 105406, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31887460

RESUMO

Automated vehicles are emerging on the transportation networks as manufacturers test their automated driving system (ADS) capabilities in complex real-world environments in testing operations like California's Autonomous Vehicle Tester Program. A more comprehensive understanding of the ADS safety performances can be established through the California Department of Motor Vehicle disengagement and crash reports. This study comprehensively examines the safety performances (159,840 disengagements, 124 crashes, and 3,669,472 automated vehicle miles traveled by the manufacturers) documented since the inauguration of the testing program. The reported disengagements were categorized as control discrepancy, environmental conditions and other road users, hardware and software discrepancy, perception discrepancy, planning discrepancy, and operator takeover. An applicable subset of disengagements was then used to identify and quantify the 5 W's of these safety-critical events: who (disengagement initiator), when (the maturity of the ADS), where (location of disengagement), and what/why (the facts causing the disengagement). The disengagement initiator, whether the ADS or human operator, is linked with contributing factors, such as the location, disengagement cause, and ADS testing maturity through a random parameter binary logit model that captured unobserved heterogeneity. Results reveal that compared to freeways and interstates, the ADS has a lower likelihood of initiating the disengagement on streets and roads compared to the human operator. Likewise, software and hardware, and planning discrepancies are associated with the ADS initiating the disengagement. As the ADS testing maturity advances in months, the probability of the disengagement being initiated by the ADS marginally increases when compared to human-initiated. Overall, the study contributes by understanding the factors associated with disengagements and exploring their implications for automated systems.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Automação , Condução de Veículo/psicologia , Automóveis/classificação , Condução de Veículo/estatística & dados numéricos , California , Humanos , Sistemas Homem-Máquina
2.
Accid Anal Prev ; 135: 105354, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31790970

RESUMO

Automated vehicles (AVs) represent an opportunity to reduce crash frequency by eliminating driver error, as safety studies reveal human error contributes to the majority of crashes. To provide insights into the contributing factors of AV crashes, this study created a unique database from the California Department of Motor Vehicles 124 manufacturer-reported Traffic Collision Reports and was linked with detailed data on roadway and built-environment attributes. A novel text analysis was first conducted to extract useful information from crash report narratives. Of the crashes that could be geocoded (N = 113), results indicate the most frequent AV crash type was rear-end collisions (61.1%; N = 69) and 13.3% (N = 15) were injury crashes. These noteworthy outcomes and a small sample size motivated us to rigorously analyze rear-end and injury crashes in a Full Bayesian empirical setup. Owing to the potential issue of unobserved heterogeneity, hierarchical-Bayes fixed and random parameter logit models are estimated. Results reveal that when the automated driving system is engaged and remains engaged, the likelihood of an AV-involved rear-end crash is substantially higher compared to a conventionally-driven AV or when the driver disengages the automated driving system prior to a crash. Given the AV-involved crashes, the likelihood of an AV-involved rear-end crash was significantly higher in mixed land-use settings compared to other land-use types, and was significantly lower near public/private schools. Correlations of other roadway attributes and environmental factors with AV-involved rear-end and injury crash propensities are discussed. This study aids in understanding the interactions of AVs and human-driven conventional vehicles in complex urban environments.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Condução de Veículo , Acidentes de Trânsito/classificação , Teorema de Bayes , Ambiente Construído , California , Humanos , Modelos Logísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...