Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(7): e2400021, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987219

RESUMO

Enzyme-mediated polyethylene terephthalate (PET) depolymerization has recently emerged as a sustainable solution for PET recycling. Towards an industrial-scale implementation of this technology, various strategies are being explored to enhance PET depolymerization (PETase) activity and improve enzyme stability, expression, and purification processes. Recently, rational engineering of a known PET hydrolase (LCC-leaf compost cutinase) has resulted in the isolation of a variant harboring four-point mutations (LCC-ICCG), presenting increased PETase activity and thermal stability. Here, we revealed the enzyme's natural extracellular expression and used it to efficiently screen error-prone genetic libraries based on LCC-ICCG for enhanced activity toward consumer-grade PET. Following multiple rounds of mutagenesis and screening, we successfully isolated variants that exhibited up to a 60% increase in PETase activity. Among other mutations, the improved variants showed a histidine to tyrosine substitution at position 218, a residue known to be involved in substrate binding and stabilization. Introducing H218Y mutation on the background of LCC-ICCG (named here LCC-ICCG/H218Y) resulted in a similar level of activity improvement. Analysis of the solved structure of LCC-ICCG/H218Y compared to other known PETases featuring different amino acids at the equivalent position suggests that H218Y substitution promotes enhanced PETase activity. The expression and screening processes developed in this study can be further used to optimize additional enzymatic parameters crucial for efficient enzymatic degradation of consumer-grade PET.


Assuntos
Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Estabilidade Enzimática , Biblioteca Gênica , Burkholderiales
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159031, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34428548

RESUMO

Microvascular dysfunction is a key contributor to vascular hypertension, one of the most common chronic diseases in the world. Microvascular dysfunction leads to the loss of nitric oxide-mediated endothelial dilation and the subsequent compensatory function of endothelium-derived hyperpolarizing (EDH) factors in the regulation of vascular tone. Previously, we showed that lactone metabolite derived from arachidonic acid induces endothelial-dependent vasodilation in isolated human microvessels. Based on structural similarities, we hypothesize that additional lactone metabolites formed from eicosapentaenoic fatty acid (EPA) may bear EDH properties. AIM: To elucidate the vasodilatory and blood pressure (BP)-reducing characteristics of the 5,6-EEQ (5,6-epoxyeicosatetraenoic acids) lactone (EPA-L) in hypertensive 5/6 nephrectomy (5/6Nx) rats. METHODS: 5/6Nx hypertensive rats intravenously administrated with EPA-L for five days. BP, blood and urine chemistry, and kidney function were detected and analyzed. Vascular dilation was detected using a pressure myograph with or without Ca2+ - activated K+ (KCa) endothelial channel inhibitors. KCNN3 and KCNN4 gene expression (mRNA) detected in mesenteric arteries from 5/6Nx and NT rats. RESULTS: EPA-L administration to 5/6Nx rats significantly (p < 0.05) reduced BP and heart rate without affecting kidney function. 5/6Nx rat mesenteric arterioles exhibited a lower dilation response to acetylcholine (10-7 mol/l) than normotensive (NT) vessels, while EPA-L administration restored the vessel relaxation response. The EPA-L-driven relaxation of mesenteric arteries was significantly reduced by pretreatment with TRAM-34 and apamin. However, KCa channel expression did not significantly differ between 5/6Nx and NT mesenteric arteries. CONCLUSION: EPA-L reduces BP by improving microvessel dilation involving calcium-dependent potassium endothelial channels.


Assuntos
Compostos de Epóxi/farmacologia , Hipertensão/tratamento farmacológico , Rim/efeitos dos fármacos , Lactonas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Fatores Biológicos/genética , Fatores Biológicos/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Modelos Animais de Doenças , Ácido Eicosapentaenoico/metabolismo , Compostos de Epóxi/química , Humanos , Hipertensão/patologia , Rim/metabolismo , Rim/patologia , Nefrectomia , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Dahl , Vasodilatação/genética
3.
Sci Rep ; 9(1): 8929, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222142

RESUMO

Chd1 is a chromatin remodeler that is involved in nucleosome positioning and transcription. Deletion of CHD1 is a frequent event in prostate cancer. The Structural Maintenance of Chromosome (SMC) complex cohesin mediates long-range chromatin interactions and is involved in maintaining genome stability. We provide new evidence that Chd1 is a regulator of cohesin. In the yeast S. cerevisiae, Chd1 is not essential for viability. We show that deletion of the gene leads to a defect in sister chromatid cohesion and in chromosome morphology. Chl1 is a non-essential DNA helicase that has been shown to regulate cohesin loading. Surprisingly, co-deletion of CHD1 and CHL1 results in an additive cohesion defect but partial suppression of the chromosome structure phenotype. We found that the cohesin regulator Pds5 is overexpressed when Chd1 and Chl1 are deleted. However, Pds5 expression is reduced to wild type levels when both genes are deleted. Finally, we show a correlation in the expression of CHD1 and cohesin genes in prostate cancer patients. Furthermore, we show that overexpression of cohesin subunits is correlated with the aggressiveness of the tumor. The biological roles of the interplay between Chd1, Chl1 and SMCs are discussed.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a DNA/genética , Humanos , Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , Fatores de Transcrição/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...