Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(2): 451-463, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228858

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Linhagem Celular , Evasão da Resposta Imune , Imunidade Inata
2.
J Diet Suppl ; 20(3): 505-530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34842030

RESUMO

The endocannabinoid system (ECS) is a widespread cell signaling network that maintains homeostasis in response to endogenous and exogenous stressors. This has made the ECS an attractive therapeutic target for various disease states. The ECS is a well-known target of exogenous phytocannabinoids derived from cannabis plants, the most well characterized being Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). However, the therapeutic efficacy of cannabis products comes with a risk of toxicity and high abuse potential due to the psychoactivity of THC. CBD, on the other hand, is reported to have beneficial medicinal properties including analgesic, neuroprotective, anxiolytic, anticonvulsant, and antipsychotic activities, while apparently lacking the toxicity of THC. Nevertheless, not only is the currently available scientific data concerning CBD's efficacy insufficient, there is also ambiguity surrounding its regulatory status and safety in humans that brings inherent risks to manufacturers. There is a demand for alternative compounds combining similar effects with a robust safety profile and regulatory approval. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator, primarily known for its anti-inflammatory, analgesic and neuroprotective properties. It appears to have a multi-modal mechanism of action, by primarily activating the nuclear receptor PPAR-α while also potentially working through the ECS, thus targeting similar pathways as CBD. With proven efficacy in several therapeutic areas, its safety and tolerability profile and the development of formulations that maximize its bioavailability, PEA is a promising alternative to CBD.


Assuntos
Canabidiol , Cannabis , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Endocanabinoides/metabolismo , Amidas , Etanolaminas/farmacologia
3.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069940

RESUMO

All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.


Assuntos
Amidas/metabolismo , Amidas/farmacologia , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Suplementos Nutricionais , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Humanos , Inflamação/imunologia , Mediadores da Inflamação/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Dor/tratamento farmacológico
4.
Int J Toxicol ; 40(2): 161-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576293

RESUMO

Palmitoylethanolamide (PEA) is an endogenous ethanolamine playing a protective and homeodynamic role in animals and plants. Prenatal developmental toxicity of PEA was tested following oral administration to pregnant female Wistar rats, from days 0 to 19 of gestation, at dosage of 250, 500, or 1,000 mg/kg body weight, according to Organisation for Economic Co-operation and Development Test Guideline No. 414. On gestation day 20, cesarean sections were performed on the dams, followed by examination of their ovaries and uterine contents. The fetuses were further examined for external, visceral, and skeletal abnormalities. Palmitoylethanolamide did not cause any alterations at any of the given dosages in the measured maternal parameters of systemic toxicity (body weight, food consumption, survival, thyroid functions, organ weight, histopathology), reproductive toxicity (preimplantation and postimplantation losses, uterus weight, number of live/dead implants and early/late resorptions, litter size and weights, number of fetuses, their sex ratio), and fetal external, visceral, or skeletal observations. Any alterations that were recorded were "normal variations" or "minor anomalies," which were unrelated to treatment with PEA. Under the condition of this prenatal study, the no-observed-adverse-effect level of PEA for maternal toxicity, embryotoxicity, fetotoxicity, and teratogenicity in rats was found to be >1,000 mg/kg body weight/d. It indicates that PEA is well tolerated by and is safe to pregnant rats even at a high dose of 1,000 mg/kg body weight/d, equivalent to a human dose of greater than 9.7 g/d. This prenatal developmental toxicity study contributes greatly in building a robust safety profile for PEA.


Assuntos
Etanolaminas/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Complicações na Gravidez/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal , Administração Oral , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Gravidez , Gestantes , Ratos , Ratos Wistar
5.
Regul Toxicol Pharmacol ; 117: 104748, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32800848

RESUMO

A prenatal developmental toxicological study was conducted to evaluate the safety of an alkaloid-free Ageratum conyzoides extract powder administration on pregnant female Wistar rats and on the development of the conceptus in accordance with OECD test guideline (no. 414). Pyrrolizidine alkaloids (PAs) naturally present in A. conyzoides have been shown to induce toxicity in past studies, particularly towards hepatic cells. Therefore our test item preparation of A.conyzoides extract (aerial part of the plant) consisted of the removal of PAs. There were no treatment related adverse effects found during maternal examinations (body weights, food consumption, numbers of pregnant and non-pregnant female rats, endocrine evaluation, gravid uterine weights, and number of corpora lutea), maternal/fetal examinations (numbers of implantation sites, pre-and post-implantation loss (%), dead and live fetuses (%), resorption sites), or fetal examinations (litter size and weights, number of fetuses, sex ratio, or external, visceral, and skeletal variations and malformations) in the Ageratum conyzoides extract powder groups at doses of 500, 1000 and 2000 mg/kw bw/day compared to vehicle control group. The no observed adverse effect level (NOAEL) determined for both maternal and developmental toxicity was 2000 mg/kg bw/day, which was the highest dose tested.


Assuntos
Ageratum/toxicidade , Alcaloides , Desenvolvimento Fetal/efeitos dos fármacos , Extratos Vegetais/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Desenvolvimento Fetal/fisiologia , Masculino , Pós , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...