Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(12): 124308, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598590

RESUMO

Photodissociation of the van der Waals complex Ar-I2 after excitation into the Rydberg states of I2 has been investigated with velocity map imaging of photofragments. Formation of the translationally hot ions of argon Ar+ with three modes in kinetic energy distribution has been revealed. The measured dependence of the kinetic energy of Ar+ on the pumping photon energy indicates the appearance of Ar+ from three channels of the photodissociation of the linear intermediate Ar+-I-I- containing chemically bound argon. These channels are (1) dissociation into Ar++ I2 -; (2) three-body dissociation into (Ar+)* + I* + I-, with (Ar+)* and I* being the 2P1/2 states of the species; and (3) two-body electron photodetachment, giving rise to Ar+ + I2 + e. Three indicated channels are similar to those established for the photodissociation of trihalide anions. This similarity confirms the conclusion on the formation of the Ar+-I-I- intermediate, which is isoelectronic to the trihalide anion Cl-I-I-. The mechanism of the Ar+-I-I- formation involves two-photon excitation of the complex Ar-I2 into the Rydberg state of I2 converted into the ion-pair state and further electron transfer from Ar to I+ of the ion-pair state. The self-assembling of the structure making the formation of the Ar+-I-I- intermediate energetically accessible is confirmed by modeling the dynamics in the excited linear complex Ar-I2. Photoexcitation of the van der Waals complexes of noble gases with halogens into the ion-pair states of halogen is supposed to be a promising approach for generating the new chemical compounds of noble gas atoms.

2.
J Chem Phys ; 147(23): 234304, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272931

RESUMO

The photodissociation of van der Waals complexes of iodine X-I2 (X = I2, C2H4) excited via Charge-Transfer (CT) band has been studied with the velocity map imaging technique. Photodissociation of both complexes gives rise to translationally "hot" molecular iodine I2 via channels differing by kinetic energy and angular distribution of the recoil directions. These measured characteristics together with the analysis of the model potential energy surface for these complexes allow us to infer the back-electron-transfer (BET) in the CT state to be a source of observed photodissociation channels and to make conclusions on the location of conical intersections where the BET process takes place. The BET process is concluded to provide an I2 molecule in the electronic ground state with moderate vibrational excitation as well as X molecule in the electronic excited state. In the case of X = I2, the BET process converts anion I2- of the CT state into the neutral I2 in the repulsive excited electronic state which then dissociates promptly giving rise to a pair of I atoms in the fine states 2P1/2. In the case of C2H4-I2, the C2H4 molecules appear in the triplet T1 electronic state. Conical intersection for corresponding BET process becomes energetically accessible after partial twisting of C2H4+ frame in the excited CT state of complex. The C2H4(T)-I2 complex gives rise to triplet ethylene as well as singlet ethylene via the T-S conversion.

3.
Phys Chem Chem Phys ; 17(43): 28565-73, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278993

RESUMO

The channel of singlet oxygen O2((1)Δg) photogeneration from van der Waals complexes of oxygen X-O2 has been investigated to discriminate between two possible mechanisms based on charge-transfer (CT) or double spin-flip (DSF) transitions. The results obtained in this work for complexes with X = ethylene C2H4, 1,3-butadiene C4H6, deuterated methyl iodide CD3I, benzene C6H6 and water H2O and for those investigated previously indicate the DSF mechanism as a source of singlet oxygen. The formation of O2((1)Δg) is observed only when the energy of exciting quantum is sufficient for DSF transition. Universally detected low vibrational excitation of O2((1)Δg) arising in the photodissociation of van der Waals complexes X-O2 indicates the DSF mechanism as its source. For complex of ethylene C2H4-O2ab initio calculations of vertical energy ΔE(vert) for DSF and CT transitions have been carried out. The positive results of singlet oxygen formation from C2H4-O2 can be explained by the DSF but not by the CT mechanism.

4.
J Chem Phys ; 140(12): 124311, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697445

RESUMO

Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500-74 500 cm(-1) covering the bands of high-lying gerade Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g has been applied. The ion signal was dominated by the atomic fragment ion I(+). Up to 5 dissociation channels yielding I(+) ions with different kinetic energies were observed when the I2 molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I(+) and I(-) ions with equal kinetic energy indicating predissociation of I2 via ion-pair states. The contribution of this channel was up to about 50% of the total I(+) signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I(+) ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I2, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0g (+) and D(')2g ion-pair states are concluded to be responsible for predissociation of Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s(2)5p(4)6s(1)) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I2 molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...