Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35160647

RESUMO

Additive manufacturing technologies are increasingly used in the production of semi-finished workpieces intended for further processing. This entails the need to investigate the machinability and final properties of such products. Comparative research on wire electrical discharge machining (WEDM) processes performed with two kinds of AISI 316L stainless steel workpieces is presented in this paper. The first workpiece was made by selective laser melting (SLM), while the second one was casting. Both working materials were cut with current values ranging from 8 to 72 amps. A comparison of roughness, structure and chemical composition of machined surfaces was performed between the two kinds of specimens. For the SLM sample, parameters of the cutting process that provide relatively low surface roughness (Ra ≤ 10 µm) with the simultaneous maximization of the process efficiency were determined. It was found that in the case of applying high current values (72 amp.), more favorable properties of the treated surface were obtained for the SLM sample than for the cast one.

2.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299547

RESUMO

The aspect of drug delivery is significant in many biomedical subareas including tissue engineering. Many studies are being performed to develop composites with application potential for bone tissue regeneration which at the same provide adequate conditions for osteointegration and deliver the active substance conducive to the healing process. Hydroxyapatite shows a great potential in this field due to its osteoinductive and osteoconductive properties. In the paper, hydroxyapatite synthesis via the wet precipitation method and its further use as a ceramic phase of polymer-ceramic composites based on PVP/PVA have been presented. Firstly, the sedimentation rate of hydroxyapatite in PVP solutions has been determined, which allowed us to select a 15% PVP solution (sedimentation rate was 0.0292 mm/min) as adequate for preparation of homogenous reaction mixture treated subsequently with UV radiation. Both FT-IR spectroscopy and EDS analysis allowed us to confirm the presence of both polymer and ceramic phase in composites. Materials containing hydroxyapatite showed corrugated and well-developed surface. Composites exhibited swelling properties (hydroxyapatite reduced this property by 25%) in simulated physiological fluids, which make them useful in drug delivery (swelling proceeds parallel to the drug release). The short synthesis time, possibility of preparation of composites with desired shapes and sizes and determined physicochemical properties make the composites very promising for biomedical purposes.


Assuntos
Cerâmica/química , Durapatita/química , Polímeros/química , Álcool de Polivinil/química , Polivinil/química , Pirrolidinas/química , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Engenharia Tecidual/métodos
3.
Materials (Basel) ; 13(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717931

RESUMO

Barium titanate is a ferroelectric perovskite with unique electric properties; therefore, it is widely applied in the fabrication of inorganic coatings or thin films, capacitors, or in the production of devices for energy storage and conversion. This paper describes the mechanochemical synthesis of BaTiO3 from BaO and TiO2 using a ball mill. XRD analysis allowed concluding that barium titanate was formed after 90 min of mechanochemical grinding. It was also proved by spectroscopic analysis and the band corresponding to Ti-O vibrations on obtained Fourier Transform Infrared (FT-IR) spectra. The specific surface area of obtained powder was 25.275 m2/g. Next, formed perovskite was dispersed in an acrylic poly(ethylene glycol) (superabsorbent polymer suspension, SAP) suspension prepared using microwave radiation. Final suspensions differed in the concentration of SAP applied. It was proven that the increase of SAP concentration does not affect the acidity of the suspension, but it does increase its dynamic viscosity. A sample with 83 wt.% of SAP reached a value of approximately 140 mPa∙s. Dispersions with higher values of SAP mass fraction exhibited lower sedimentation rates. Molecules such as SAP may adsorb to the surface of particles and thus prevent their agglomeration and make them well monodispersed. Based on the performed experiments, it can be concluded that acrylic poly(ethylene glycol) suspension is a suitable fluid that may stabilize barium titanate dispersions.

4.
Materials (Basel) ; 13(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517282

RESUMO

The study evaluated the possibility of using natural fibers as a reinforcement of bio-polyethylene. Flax, coconut, basalt fiber, and wood flour were used in the work. Strength tests like static tensile test, three-point flexural test, or impact strength showed a positive effect of reinforcing bio-polyethylene-based composites. The effect of water and thermal ageing on the mechanical behavior of composites was assessed. In order to analyze the structure, SEM microscope images were taken and the effect of natural fibers on the change in the nature of cracking of composites was presented. Composites with natural fibers at a content of 12% by weight, resulting in increase of strength and rigidity of materials. The greatest strengthening effect for natural fibers was obtained for the composite with basalt fibers.

5.
Materials (Basel) ; 13(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213947

RESUMO

Nickel-based superalloys are being increasingly applied to manufacture components in the aviation industry. The materials are classified as difficult-to-machine using conventional methods. Nowadays, manufacturing techniques are needed to drill high aspect ratio holes of above 20:1 (depth-to-diameter ratio) in these materials. One of the most effective methods of making high-aspect-ratio holes is electrical discharge drilling (EDD). While drilling high aspect ratio holes, a crucial issue is the flushing of the gap area and the evacuation of the erosion products. The use of deionized water as the dielectric fluid in the EDD offers a considerable potential. This paper includes an analysis of the influence of the machining parameters (pulse time, current amplitude and discharge voltage) on the process performance (drilling speed, linear tool wear, taper angle, hole's aspect ratio, side gap thickness), during the EDD with the use of deionized water in the Inconel 718 alloy. The obtained through holes were subjected to the extended analysis. The impact of the initial working fluid temperature and pressure on the conditions of the flow through the electrode channel was also subjected to the analysis. The deionized water properties were changed by applying an initial temperature. Based on the results of an analysis of the previous research, the EDD of the through holes was performed for a pre-set initial temperature (~313.15 °K) and initial pressure of the working fluid (8 MPa) and selected process parameters. An analysis of the results indicates increasing of hole's aspect ratio by about 15% (above 30), decreasing the side gap thickness by about 40% and enhanced surface integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...