Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 143: 104405, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37270143

RESUMO

BACKGROUND: Scientific discovery progresses by exploring new and uncharted territory. More specifically, it advances by a process of transforming unknown unknowns first into known unknowns, and then into knowns. Over the last few decades, researchers have developed many knowledge bases to capture and connect the knowns, which has enabled topic exploration and contextualization of experimental results. But recognizing the unknowns is also critical for finding the most pertinent questions and their answers. Prior work on known unknowns has sought to understand them, annotate them, and automate their identification. However, no knowledge-bases yet exist to capture these unknowns, and little work has focused on how scientists might use them to trace a given topic or experimental result in search of open questions and new avenues for exploration. We show here that a knowledge base of unknowns can be connected to ontologically grounded biomedical knowledge to accelerate research in the field of prenatal nutrition. RESULTS: We present the first ignorance-base, a knowledge-base created by combining classifiers to recognize ignorance statements (statements of missing or incomplete knowledge that imply a goal for knowledge) and biomedical concepts over the prenatal nutrition literature. This knowledge-base places biomedical concepts mentioned in the literature in context with the ignorance statements authors have made about them. Using our system, researchers interested in the topic of vitamin D and prenatal health were able to uncover three new avenues for exploration (immune system, respiratory system, and brain development) by searching for concepts enriched in ignorance statements. These were buried among the many standard enriched concepts. Additionally, we used the ignorance-base to enrich concepts connected to a gene list associated with vitamin D and spontaneous preterm birth and found an emerging topic of study (brain development) in an implied field (neuroscience). The researchers could look to the field of neuroscience for potential answers to the ignorance statements. CONCLUSION: Our goal is to help students, researchers, funders, and publishers better understand the state of our collective scientific ignorance (known unknowns) in order to help accelerate research through the continued illumination of and focus on the known unknowns and their respective goals for scientific knowledge.


Assuntos
Bases de Conhecimento , Conhecimento , Processamento de Linguagem Natural , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro , Publicações , Vitamina D
2.
BMC Bioinformatics ; 22(Suppl 1): 598, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920707

RESUMO

BACKGROUND: Automated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models have the potential to outperform multi-class classification approaches. METHODS: We systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning through extensive studies of alternative methods and hyperparameter selections. We not only identify the best-performing systems and parameters across a wide variety of ontologies but also provide insights into the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. RESULTS: Bidirectional encoder representations from transformers for biomedical text mining (BioBERT) for span detection along with the open-source toolkit for neural machine translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies annotated in the CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches. CONCLUSIONS: Machine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT shared task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation .

3.
Bioinform Adv ; 1(1): vbab012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34661112

RESUMO

MOTIVATION: Science progresses by posing good questions, yet work in biomedical text mining has not focused on them much. We propose a novel idea for biomedical natural language processing: identifying and characterizing the questions stated in the biomedical literature. Formally, the task is to identify and characterize statements of ignorance, statements where scientific knowledge is missing or incomplete. The creation of such technology could have many significant impacts, from the training of PhD students to ranking publications and prioritizing funding based on particular questions of interest. The work presented here is intended as the first step towards these goals. RESULTS: We present a novel ignorance taxonomy driven by the role statements of ignorance play in research, identifying specific goals for future scientific knowledge. Using this taxonomy and reliable annotation guidelines (inter-annotator agreement above 80%), we created a gold standard ignorance corpus of 60 full-text documents from the prenatal nutrition literature with over 10 000 annotations and used it to train classifiers that achieved over 0.80 F1 scores. AVAILABILITY AND IMPLEMENTATION: Corpus and source code freely available for download at https://github.com/UCDenver-ccp/Ignorance-Question-Work. The source code is implemented in Python.

4.
Pac Symp Biocomput ; 26: 107-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33691009

RESUMO

How has the focus of research papers on a given disease changed over time? Identifying the papers at the cusps of change can help highlight the emergence of a new topic or a change in the direction of research. We present a generally applicable unsupervised approach to this question based on semantic changepoints within a given collection of research papers. We illustrate the approach by a range of examples based on a nascent corpus of literature on COVID-19 as well as subsets of papers from PubMed on the World Health Organization list of neglected tropical diseases. The software is freely available at: https://github.com/pdddinakar/SemanticChangepointDetection.


Assuntos
COVID-19 , Semântica , Biologia Computacional , Humanos , PubMed , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...