Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(5): 1183-1193, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35201171

RESUMO

We propose a stable full-duplex transmission of millimeter-wave signals over a hybrid single-mode fiber (SMF) and free-space optics (FSO) link for the fifth-generation (5G) radio access networks to accelerate the Industry 4.0 transformation. For the downlink (DL), we transmit 39 GHz subcarrier multiplexing (SCM) signals using variable quadrature amplitude modulation (QAM) allocations for multi-user services. As a proof of operation, we experimentally demonstrate the transmission of 3 Gb/s SCM signals (1 Gb/s per user) over a hybrid system consisting of a 10 km SMF and 1.2 m FSO link. For the uplink (UL), satisfactory performance for the transmission of 2.4 Gb/s 5G new radio (NR) signal at 37 GHz over the hybrid system is experimentally confirmed for the first time, to the best of our knowledge. The measured error vector magnitudes for both DL and UL signals using 4/16/64-QAM formats are well below the third generation partnership project (3GPP) requirements. We also further evaluate by simulation the full-duplex transmission over the system in terms of received optical and RF powers and bit error rate performance. A wireless radio distance of approximately 200 m, which is sufficient for 5G small-cell networks, is estimated for both DL and UL direction under the heavy rain condition, based on the available data from Spain. Furthermore, simulation for the DL direction is conducted to verify the superior performance of the system using variable QAM allocation over uniform QAM allocation. Using a variable modulation allocation, up to five users (2 Gb/s per user) can be transmitted over a hybrid 10 km SMF and 150 m FSO link.

2.
Appl Opt ; 59(16): 4997-5005, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543497

RESUMO

We present a theoretical and experimental study on the impact of different thermal-induced free-space turbulence distributions on the M-quadrature amplitude modulation (M-QAM) signal transmission in radio frequency K-band over hybrid optical links of standard single mode fiber (SSMF) and free-space optics (FSO). Frequency multiplication using an external intensity modulator biased at the null transmission point has been employed to photonically generate radio signals at a frequency of 25 GHz , included for the frequency bands for fifth-generation (5G) mobile networks. Moreover, extensive simulations have been performed for 10Gb/s with 4-, 16-, and 64-QAM over 5 km of SSMF and 500 m long FSO channels under scenarios with different turbulence levels and distributions. Proof-of-concept experiments have been conducted for 20 MHz with 4- and 64-QAM over 5 km of SSMF and 2 m long FSO channels under turbulence conditions. Both theoretical and experimental systems have been analyzed in terms of error vector magnitude (EVM) performance showing feasible transmission over the hybrid links in the received optical power range. Non-uniform turbulence distributions are shown to have a different impact on M-QAM modulation formats, i.e., turbulence distributions with higher strength in the middle of the FSO link reveal a 1.9 dB penalty when using 64-QAM signals compared to a 1.3 dB penalty using 4-QAM signals, whereas higher penalties have been measured when 4-QAM format is transmitted over turbulence distributions with larger magnitude in the second half of the FSO link. The results have been validated by theoretical predictions and lead to practical consequences on future networks' deployment.

3.
Opt Express ; 27(23): 33745-33756, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878436

RESUMO

Two experimental configurations of a hybrid K-band (25 GHz) microwave photonic link (MPL) are investigated for seamless broadband wireless access networks. Experimental configurations consist of optical fiber, free-space optics (FSO) and radio frequency (RF) wireless channels. We analyze in detail the effects of channel impairments, namely fiber chromatic dispersion, atmospheric turbulence and multipath-induced fading on the transmission performance. In the first configuration, transmission of the 64-quadrature amplitude modulation (QAM) signal with 5, 20 and 50 MHz bandwidths over 5 km standard single-mode fiber (SSMF), 2 m turbulent FSO and 3 m RF wireless channels is investigated. We show that, for QAM with a high bandwidth, the link performance is being affected more by atmospheric turbulence. In the second configuration, the 20 MHz 4/16/64-QAM signals over a 50 km SSMF and 40 m FSO/RF wireless links are successfully transmitted with the measured error vector magnitude (EVM) values of 12, 9 and 7.9%, respectively. It is shown that, for all transmitted microwave vector signals, the bit error rate is lower than the hard-decision forward-error-correction limit of 3.8×10-3. Moreover, an extended FSO link span of 500 m for 25 GHz hybrid MPL with 16-QAM at 10 Gb/s under the weak and strong turbulence regimes is evaluated via simulation analysis to mimic a practical outdoor system.

4.
Opt Express ; 27(16): 22127-22137, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510506

RESUMO

This paper presents experimental results for an all-optical free-space optical (FSO) relay-assisted system by employing an all-optical regenerate and forward (AORF) scheme in order to increase the transmission link span. The ultra-short pulse (i.e., 2 ps) regeneration technique based on Mamyshev method is adopted. We have developed a dedicated experimental test-bed composed of optical fiber components and FSO links to demonstrate the proposed scheme and evaluate its performance in terms of the Q-factor and bit error rate (BER) under turbulence regimes for both single and dual-hop network architectures. We show that, using the AORF a hundred times improvement in the BER performance is achieved compared to the amplify-and-forward scheme for a fixed signal-to-noise ratio under turbulence conditions.

5.
Opt Lett ; 43(5): 1035-1038, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489774

RESUMO

This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth. We assess the link performance by exposing the RoFSO section to atmospheric turbulence conditions. Further, we show that the measured minimum error vector magnitude (EVM) is 4.7% and also verify that the proposed system with the free-space-optics link span of 100 m under strong turbulence can deliver an acceptable EVM of <9% with signal-to-noise ratio levels of 22 dB and 10 dB with and without turbulence, respectively.

6.
Appl Opt ; 54(4): 751-6, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967784

RESUMO

We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 µm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA