Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 16(1): 128, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743272

RESUMO

BACKGROUND: Filamentous fungi are commonly used as production hosts for bulk enzymes in biotechnological applications. Their robust and quick growth combined with their ability to secrete large amounts of protein directly into the culture medium makes fungi appealing organisms for the generation of novel production systems. The red bread mold Neurospora crassa has long been established as a model system in basic research. It can be very easily genetically manipulated and a wealth of molecular tools and mutants are available. In addition, N. crassa is very fast growing and non-toxic. All of these features point to a high but so far untapped potential of this fungus for biotechnological applications. In this study, we used genetic engineering and bioprocess development in a design-build-test-cycle process to establish N. crassa as a production host for heterologous proteins. RESULTS: The human antibody fragment HT186-D11 was fused to a truncated version of the endogenous enzyme glucoamylase (GLA-1), which served as a carrier protein to achieve secretion into the culture medium. A modular expression cassette was constructed and tested under the control of different promoters. Protease activity was identified as a major limitation of the production strain, and the effects of different mutations causing protease deficiencies were compared. Furthermore, a parallel bioreactor system (1 L) was employed to develop and optimize a production process, including the comparison of different culture media and cultivation parameters. After successful optimization of the production strain and the cultivation conditions an exemplary scale up to a 10 L stirred tank reactor was performed. CONCLUSIONS: The data of this study indicate that N. crassa is suited for the production and secretion of heterologous proteins. Controlling expression by the optimized promoter Pccg1nr in a fourfold protease deletion strain resulted in the successful secretion of the heterologous product with estimated yields of 3 mg/L of the fusion protein. The fungus could easily be cultivated in bioreactors and a first scale-up was successful. The system holds therefore much potential, warranting further efforts in optimization.


Assuntos
Fragmentos de Imunoglobulinas/metabolismo , Neurospora crassa/metabolismo , Reatores Biológicos , Meios de Cultura/química , Glucana 1,4-alfa-Glucosidase/genética , Humanos , Concentração de Íons de Hidrogênio , Fragmentos de Imunoglobulinas/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
2.
Biotechnol J ; 6(12): 1516-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21805641

RESUMO

Bacillus megaterium was used as an alternative high potential microbial production system for the production of antibody fragment D1.3 scFv. The aim of the study was to follow a holistic optimization approach from medium screening in small scale microtiter platforms, gaining deeper process understanding in the bioreactor scale and implementing advanced process strategies at larger scales (5-100 L). Screening and optimization procedures were supported by statistical design of experiments and a genetic algorithm approach. The process control relied on a soft-sensor for biomass estimation to establish a µ-oscillating time-dependent fed-batch strategy. Several cycles of growth phases and production phases, equal to starving phases, were performed in one production. Flow cytometry was used to monitor and characterize the dynamics of secretion and cell viability. Besides the biosynthesis of the product, secretion was optimized by an appropriate medium design considering different carbon sources, metal ions, (NH(4))(2)SO(4), and inductor concentrations. For bioprocess design, an adapted oscillating fed-batch strategy was conceived and successfully implemented at an industrially relevant scale of 100 L. In comparison to common methods for controlling fed-batch profiles, the developed process delivered increased overall productivities. Thereby measured process parameters such as growth stagnation or productivity fluctuations were directly linked to single cell or population behavior leading to a more detailed process understanding. Above all, the importance of single cell analysis as key scale-free tool to characterize and optimize recombinant protein production is highlighted, since this can be applied to all development stages independently of the cultivation platform.


Assuntos
Bacillus megaterium/imunologia , Reatores Biológicos , Engenharia Celular/métodos , Fragmentos de Imunoglobulinas/biossíntese , Microbiologia Industrial/métodos , Sulfato de Amônio , Bacillus megaterium/genética , Carbono , Meios de Cultura , Citometria de Fluxo , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/isolamento & purificação , Projetos Piloto , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...