Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400843, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884149

RESUMO

Oral peptide delivery is trending again. Among the possible reasons are the recent approvals of two oral peptide formulations, which represent a huge stride in the field. For the first time, gastrointestinal (GI) permeation enhancers (PEs) are leveraged to overcome the main limitation of oral peptide delivery-low permeability through the intestinal epithelium. Despite some success, the application of current PEs, such as salcaprozate sodium (SNAC), sodium caprylate (C8), and sodium caprate (C10), is generally resulting in relatively low oral bioavailabilities (BAs)-even for carefully selected therapeutics. With several hundred peptide-based drugs presently in the pipeline, there is a huge unmet need for more effective PEs. Aiming to provide useful insights for the development of novel PEs, this review summarizes the biological hurdles to oral peptide delivery with special emphasis on the epithelial barrier. It describes the concepts and action modes of PEs and mentions possible new targets. It further states the benchmark that is set by current PEs, while critically assessing and evaluating emerging PEs regarding translatability, safety, and efficacy. Additionally, examples of novel PEs under preclinical and clinical evaluation and future directions are discussed.

2.
Drug Deliv Transl Res ; 13(11): 2807-2818, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37208562

RESUMO

Inflammation and immune system activation are key pathologic events in the onset and escalation of diabetic retinopathy (DR). Both are driven by cytokines and complement originating from the retinal pigment epithelium (RPE). Despite the RPE's pivotal role, there is no therapeutic tool to specifically interfere with the RPE-related pathomechanism. A therapy that addresses RPE cells and counteracts inflammation and immune response would be of paramount value for the early treatment of DR, where currently are no specific therapies available. Here, we utilized lipoprotein-mimetic lipid nanocapsules to deliver the anti-inflammatory and immunosuppressive drug cyclosporin A (CsA) to RPE cells. Using a mouse model of DR that mirrors all pathologic aspects of human DR, we demonstrate that intravenously applied CsA-loaded lipid nanocapsules comprehensively counteract inflammation and immune system activation. One single injection suppressed the expression of pro-inflammatory cytokines, dampened macrophage infiltration, and prevented macrophage and microglia activation in eyes with DR. This work shows that CsA-loaded lipid nanocapsules can offer new avenues for the treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Nanocápsulas , Animais , Humanos , Retinopatia Diabética/tratamento farmacológico , Ciclosporina/uso terapêutico , Nanocápsulas/uso terapêutico , Injeções Intravenosas , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Citocinas , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Lipídeos , Diabetes Mellitus/tratamento farmacológico
3.
Sci Adv ; 8(38): eabo6638, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149956

RESUMO

Retinopathy of prematurity (ROP) is a retinal disease that threatens the vision of prematurely born infants. Severe visual impairment up to complete blindness is caused by neovascularization and inflammation, progressively destroying the immature retina. ROP primarily affects newborns in middle- and low-income countries with limited access to current standard treatments such as intraocular drug injections and laser- or cryotherapy. To overcome these limitations, we developed a nanotherapeutic that effectively prevents ROP development with one simple intravenous injection. Its lipid nanocapsules transport the antiangiogenic and anti-inflammatory cyclosporin A efficiently into disease-driving retinal pigment epithelium cells. In a mouse model of ROP, a single intravenous injection of the nanotherapeutic prevented ROP and led to normal retinal development by counteracting neovascularization and inflammation. This nanotherapeutic approach has the potential to bring about a change of paradigm in ROP therapy and prevent millions of preterm born infants from developing ROP.


Assuntos
Nanocápsulas , Retinopatia da Prematuridade , Animais , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Humanos , Recém-Nascido , Inflamação/tratamento farmacológico , Injeções Intravenosas , Lipídeos , Camundongos , Nanocápsulas/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/prevenção & controle , Fator A de Crescimento do Endotélio Vascular
4.
Drug Discov Today ; 27(9): 2497-2509, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654389

RESUMO

The retinal pigment epithelium (RPE) plays a crucial part in sight-threatening diseases. In this review, we shed light on the pivotal implication of the RPE in age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity; and explain why a paradigm shift toward targeted RPE therapy is needed to efficiently fight these retinal diseases. We provide guidance for the development of RPE-specific nanotherapeutics by giving a comprehensive overview of the possibilities and challenges of drug delivery to the RPE and highlight successful nanotherapeutic approaches targeting the RPE.


Assuntos
Retinopatia Diabética , Degeneração Macular , Humanos , Recém-Nascido , Epitélio Pigmentado da Retina
5.
Int J Pharm ; 585: 119433, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32447023

RESUMO

Lipid nanocapsules are treasured nanoparticulate systems, although they lack detectability in biological environments. To overcome this, we designed LNCs loaded simultaneously with fluorescent dye and superparamagnetic iron oxide nanoparticles (Dual LNCs). The introduction of both labels did not alter nanoparticle characteristics such as size (50 nm), size distribution (polydispersity index < 0.1) or surface modifications, including the effectiveness of targeting ligands. Furthermore, the colloidal stability, particle integrity and biocompatibility of the nanoparticles were not negatively affected by label incorporation. These Dual LNCs are concomitantly visualizable via fluorescence and transmitted light imaging after either the internalization by cells or systemic administration to mice. Importantly, they are detectable in liver sections of mice using transmission electron microscopy without additional enhancement. The iron content of 0.24% (m/m) is sufficiently high for precise quantification of nanoparticle concentrations via inductively coupled plasma optical emission spectroscopy. Dual LNCs are precious tools for the investigation of in vitro and in vivo performances of lipid nanocapsule formulations, since they allow for the use of complementary imaging methods for broad range detectability.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/farmacocinética , Corantes Fluorescentes/farmacocinética , Lipídeos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Células Endoteliais/efeitos dos fármacos , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Humanos , Camundongos , Camundongos da Linhagem 129 , Microscopia Eletrônica de Transmissão por Filtração de Energia , Microscopia de Fluorescência , Nanocápsulas/química , Tamanho da Partícula
6.
Eur J Pharm Biopharm ; 139: 23-32, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851353

RESUMO

Lipid nanocapsules (LNCs) are extensively used as drug carrier systems, due to their small size distribution, biocompatibility and ease of preparation. They are especially useful for lipophilic drugs to overcome physicochemical constraints that limit their efficacy, such as low solubility in aqueous media. The aim of this work was to investigate the relationship between the intracellular availability of poorly soluble drugs delivered via LNCs and their biological efficacy in cells in vitro. Cyclosporin A (CsA) with a logPOct = 4.3 (Lucangioli et al., 2003) and Itraconazole (It) with a logPOct = 6.2 (Bhardwaj et al., 2013) served as model lipophilic compounds, as they are highly promising candidates for the treatment of neovascular ocular diseases. Due to their lipophilic properties and the resulting preference for the oily core of LNCs, high encapsulation efficiencies were achieved. Drug-loaded LNCs with particle sizes around 50 nm were grafted with an αvß3 integrin ligand (RGD) to optimize cellular uptake by human dermal microvascular endothelial cells. Even though RGD-LNCs showed excellent internalization, they exhibited insufficient inhibitory effects in vitro regarding endothelial cell proliferation, vascular endothelial growth factor expression, and tube formation in contrast to free drugs. This loss of efficacy could be explained by negligible intracellular availability of the poorly soluble drugs from LNCs.


Assuntos
Ciclosporina/farmacocinética , Liberação Controlada de Fármacos , Itraconazol/farmacocinética , Nanocápsulas/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ciclosporina/administração & dosagem , Ciclosporina/química , Combinação de Medicamentos , Composição de Medicamentos/métodos , Células Endoteliais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Itraconazol/administração & dosagem , Itraconazol/química , Lipídeos/química , Tamanho da Partícula , Solubilidade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...