Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Hypotheses ; 130: 109260, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31383326

RESUMO

Systemic Exertion Intolerance Disease (SEID) or myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) has an unknown aetiology, with no known treatment and a prevalence of approximately 22 million individuals (2%) in Western countries. Although strongly suspected, the role of lactate in pathology is unknown, nor has the nature of the two most central symptoms of the condition - post exertional malaise and fatigue. The proposed mechanism of action of pyruvate dehydrogenase complex (PDC) plays a central role in maintaining energy production with cofactors alpha-lipoic acid (LA) and its counterpart dihydrolipoic acid (DHLA), its regeneration suggested as the new rate limiting factor. Decreased DHLA regeneration due to impairment of the E3 subunit or crossover of the swinging arms of the E2 subunit of PDC have been suggested as a cause of ME/CFS/SEID resulting in instantaneous fluctuations in lactate levels and instantaneous offset of the DHLA/LA ratio and defining the condition as an LA deficiency with chronic instantaneous hyperlactataemia with explicit stratification of symptoms. While instantaneous hyperlactataemia has been suggested to account for the PEM, the fatigue was explained by the downregulated throughput of pyruvate and consequently lower production of ATP with the residual enzymatic efficacy of the E3 subunit or crossover of the E2 as a proposed explanation of the fatigue severity. Functional diagnostics and visualization of instantaneous elevations of lactate and DHLA has been suggested. Novel treatment strategies have been implicated to compensate for chronic PDC impairment and hyperlactataemia. This hypothesis potentially influences the current understanding and treatment methods for any type of hyperlactataemia, fatigue, ME/CFS/SEID, and conditions associated with PDC impairment.


Assuntos
Síndrome de Fadiga Crônica/fisiopatologia , Complexo Piruvato Desidrogenase/metabolismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Transporte Biológico , Fadiga/etiologia , Fadiga/fisiopatologia , Síndrome de Fadiga Crônica/etiologia , Glicólise , Humanos , Mitocôndrias/metabolismo , Modelos Teóricos , Resultado do Tratamento
2.
Food Chem Toxicol ; 46(5): 1834-43, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18329775

RESUMO

The biological fate of the fish feed additive, ethoxyquin (EQ) was examined in the muscle of Atlantic salmon during 12 weeks of feeding followed by a 2 weeks depuration period. Parent EQ (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline), quinone imine (2,6-dihydro-2,2,4-trimethyl-6-quinolone), de-ethylated EQ (6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline) and EQDM (EQ dimer or 1,8'-di(1,2-dihydro-6-ethoxy-2,2,4-trimethyl-quinoline) were found to be the ubiquitous metabolites of dietary EQ, with EQDM as a main metabolite. A rapid decrease in the level of EQ (2.4 days of half-life) was balanced by an increase in EQDM, giving an unchanged net sum following 2 weeks of depuration. The mandatory 14 days depuration period prior to slaughtering of farmed salmon in Norway was not sufficient for complete elimination of EQ-derived residuals. Post depuration, EQDM accounted for 99% of sum of the two compounds in all treatment groups; possible toxicological effects of EQDM are not known. The individual concentrations of EQ and EQDM and their sum are dependent on EQ level in the feed, consequently, their residual concentrations may be controlled. The theoretical amount of EQ and EQDM consumed in one meal of farmed salmon would be under the recommended ADI, provided that the fish were raised on feed with no more than 150 mg EQ/kg feed, which is the EU maximum limit for EQ in fish feed.


Assuntos
Antioxidantes/metabolismo , Etoxiquina/metabolismo , Músculo Esquelético/metabolismo , Salmo salar/metabolismo , Agricultura , Algoritmos , Ração Animal/análise , Animais , Peso Corporal/efeitos dos fármacos , Interpretação Estatística de Dados , Dieta , Relação Dose-Resposta a Droga , Crescimento/efeitos dos fármacos , Humanos , Lipídeos/análise , Camundongos , Músculo Esquelético/química , Noruega
3.
J AOAC Int ; 90(2): 587-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17474529

RESUMO

A method for simultaneous quantitative determination of ethoxyquin (EQ) and its major metabolite in Atlantic salmon tissues, ethoxyquin dimer (EQ dimer), has been developed. The separation was achieved on tandem coupled phenyl-hexyl and C18 columns by 2-phase gradient elution with acetonitrile-ascorbic acid-acetic acid-diethyl amine organized in a 23.5 min sequence. Compounds were extracted with hexane from samples saponified in ethanol-NaOH and protected from air- and light-mediated oxidation by addition of saturated ethylenediaminetetraacetic acid, ascorbic acid, and pyrogallol. The identity of peaks was confirmed by spiking samples with standards verified by proton nuclear magnetic resonance spectrometry, mass spectrometry, and high-performance liquid chromatography. The detection limit (at 358/433 nm) of matrix-spiked EQ was 0.02 and 0.06 microg/L for EQ dimer, with 0.5 g sample weighed and resuspension in 0.5 mL hexane. Linearity was in the range of 0.2-175 microg/L for EQ and 0.3-5100 microg/L for EQ dimer. Two more ubiquitous compounds were identified as de-ethylated EQ and quinone imine. Totally, 14 peaks sharing spectral properties of EQ were separated in a single run, including a major peak present in all muscle samples, termed unknown metabolite of EQ (UMEQ). The concentrations of EQ, EQ dimer, and de-ethylated EQ, as well as concentrations of UMEQ (in arbitrary units), in the muscle were correlated to the amount of EQ fed to the salmon, thus indicating their possible metabolic origin. The pattern of 14 peaks in the muscle showed high specificity and could be used to discriminate between wild salmon and salmon fed EQ-supplemented feed. This method will be a useful tool for studying EQ metabolism and kinetics, and for the routine surveillance of residual levels of dietary EQ in farmed Atlantic salmon.


Assuntos
Antioxidantes/análise , Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas/análise , Etoxiquina/análise , Análise de Alimentos/métodos , Contaminação de Alimentos , Animais , Cromatografia Líquida/métodos , Dimerização , Etanol/química , Cinética , Salmão , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...