Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(48): 33994-34002, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38019999

RESUMO

The behaviour of confined lubricants at the atomic scale as affected by the interactions at the surface-lubricant interface is relevant in a range of technological applications in areas such as the automotive industry. In this paper, by performing fully atomistic molecular dynamics, we investigate the regime where the viscosity starts to deviate from the bulk behaviour, a topic of great practical and scientific relevance. The simulations consist of setting up a shear flow by confining the lubricant between iron oxide surfaces. By using confined Non-Equilibrium Molecular Dynamics (NEMD) simulations at a pressure range of 0.1-1.0 GPa at 100 °C, we demonstrate that the film thickness of the fluid affects the behaviour of viscosity. We find that by increasing the number of lubricant molecules, we approach the viscosity value of the bulk fluid derived from previously published NEMD simulations for the same system. These changes in viscosity occurred at film thicknesses ranging from 10.12 to 55.93 Å. The viscosity deviations at different pressures between the system with the greatest number of lubricant molecules and the bulk simulations varied from -16% to 41%. The choice of the utilized force field for treating the atomic interactions was also investigated.

2.
J Phys Chem B ; 127(11): 2587-2594, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36890108

RESUMO

Synthetic esters are used as lubricants for applications at high temperatures, but their development can be a trial and error process. In this context, molecular dynamics simulations could be used as a tool to investigate the properties of new lubricants, in particular viscosity. We employ nonequilibrium molecular dynamics (NEMD) simulations to predict bulk Newtonian viscosities of a set of mixtures of two esters, di(2-ethylhexyl) sebacate (DEHS) and di(2-ethylhexyl) adipate (DEHA) at 293 and 343 K as well as equilibrium molecular dynamics (EMD) and NEMD at 393 K and compare these to experimental measurements. The simulations predict mixture densities within 5% of the experimental values, and we are able to retrieve between 99% and 75% of the experimental viscosities for all ranges of temperature. Experimental viscosities show a linear trend which we are able to capture using NEMD at low temperature and EMD at high temperature. Our work shows that, using EMD and NEMD simulations, and the workflows we developed, we can obtain reliable estimates of the viscosities of mixtures of industrially relevant ester-based lubricants at different temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...