Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 275, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672417

RESUMO

The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S.

2.
Sci Rep ; 9(1): 7148, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073216

RESUMO

Asthenospheric mantle flow drives lithospheric plate motion and constitutes a relevant feature of Earth gateways. It most likely influences the spatial pattern of seismic velocity and deep electrical anisotropies. The Drake Passage is a main gateway in the global pattern of mantle flow. The separation of the South American and Antarctic plates since the Oligocene produced this oceanic and mantle gateway connecting the Pacific and Atlantic oceans. Here we analyze the deep crustal and upper mantle electrical anisotropy of its northern margin using long period magnetotelluric data from Tierra del Fuego (Argentina). The influence of the surrounding oceans was taken into account to constrain the mantle electrical conductivity features. 3D electrical models were calculated to fit 18 sites responses in this area. The phase tensor pattern for the longest periods reveals the existence of a well-defined NW-SE electrical conductivity anisotropy in the upper mantle. This anisotropy would result from the mantle flow related to the 30 to 6 Ma West Scotia spreading, constricted by the subducted slab orientation of the Pacific plate, rather than the later eastward mantle flow across the Drake Passage. Deep electrical anisotropy proves to be a key tool for a better understanding of mantle flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...