Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2761: 569-588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427262

RESUMO

Traumatic brain injury (TBI) is one of the foremost causes of disability and death globally. Prerequisites for successful therapy of disabilities associated with TBI involved improved knowledge of the neurobiology of TBI, measurement of quantitative changes in recovery dynamics brought about by therapy, and the translation of quantitative methodologies and techniques that were successful in tracking recovery in preclinical models to human TBI. Frequently used animal models of TBI in research and development include controlled cortical impact, fluid percussion injury, blast injury, penetrating blast brain injury, and weight-drop impact acceleration models. Preclinical models of TBI benefit from controlled injury settings and the best prospects for biometric quantification of injury and therapy-induced gradual recovery from disabilities. Impact acceleration closed head TBI paradigm causes diffuse TBI (DTBI) without substantial focal brain lesions in rats. DTBI is linked to a significant rate of death, morbidity, and long-term disability. DTBI is difficult to diagnose at the time of hospitalization with imaging techniques making it challenging to take prompt therapeutic action. The weight-drop method without craniotomy is an impact acceleration closed head DTBI model that is used to induce mild/moderate diffuse brain injuries in rodents. Additionally, we have characterized neuropathological and neurobehavioral outcomes of the weight-drop model without craniotomy for inducing closed head DTBI of graded severity with a range of mass of weights (50-450 gm). This chapter also discusses techniques and protocols for measuring numerous functional disabilities and pathological changes in the brain brought on by DTBI.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Ratos , Animais , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas/etiologia , Craniotomia
2.
ACS Biomater Sci Eng ; 10(4): 2116-2132, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498674

RESUMO

Due to excellent biocompatibility, bioactivities, and osteoconductivity, hydroxyapatite (HAp) is considered as one of the most suitable biomaterials for numerous biomedical applications. Herein, HAp was fabricated using a bottom-up approach, i.e., a wet chemical method, and its composites with TiC, h-BN, and ZrO2 were fabricated by a solid-state reaction method with enhanced mechanical and biological performances. Structural, surface morphology, and mechanical behavior of the fabricated composites were characterized using various characterization techniques. Furthermore, transmission electron microscopy study revealed a randomly oriented rod-like morphology, with the length and width of these nanorods ranging from 78 to 122 and from 9 to 13 nm. Moreover, the mechanical characterizations of the composite HZBT4 (80HAp-10TiC-5h-BN-5ZrO2) reveal a very high compressive strength (246 MPa), which is comparable to that of the steel (250 MPa), fracture toughness (14.78 MPa m1/2), and Young's modulus (1.02 GPa). In order to check the biocompatibility of the composites, numerous biological tests were also performed on different body organs of healthy adult Sprague-Dawley rats. This study suggests that the composite HZBT4 could not reveal any significant influence on the hematological, serum biochemical, and histopathological parameters. Hence, the fabricated composite can be used for several biological applications, such as bone implants, bone grafting, and bone regeneration.


Assuntos
Durapatita , Nanocompostos , Ratos , Animais , Durapatita/toxicidade , Durapatita/química , Ratos Sprague-Dawley , Materiais Biocompatíveis/toxicidade , Osso e Ossos , Nanocompostos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...