Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793481

RESUMO

In the development of bone graft substitutes, a fundamental step is the use of scaffolds with adequate composition and architecture capable of providing support in regenerative processes both on the tissue scale, where adequate resistance to mechanical stress is required, as well as at the cellular level where compliant chemical-physical and mechanical properties can promote cellular activity. In this study, based on a previous optimization study of this group, the potential of a three-dimensional construct based on polycaprolactone (PCL) and a novel biocompatible Mg- and Sr-containing glass named BGMS10 was explored. Fourier-transform infrared spectroscopy and scanning electron microscopy showed the inclusion of BGMS10 in the scaffold structure. Mesenchymal stem cells cultured on both PCL and PCL-BGMS10 showed similar tendencies in terms of osteogenic differentiation; however, no significant differences were found between the two scaffold types. This circumstance can be explained via X-ray microtomography and atomic force microscopy analyses, which correlated the spatial distribution of the BGMS10 within the bulk with the elastic properties and topography at the cell scale. In conclusion, our study highlights the importance of multidisciplinary approaches to understand the relationship between design parameters, material properties, and cellular response in polymer composites, which is crucial for the development and design of scaffolds for bone regeneration.

2.
Front Bioeng Biotechnol ; 12: 1347811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665815

RESUMO

Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 µm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.

3.
Biomater Adv ; 159: 213815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447383

RESUMO

Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.


Assuntos
Nanoestruturas , Prata , Humanos , Ratos , Animais , Prata/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli
4.
J Mater Chem B ; 12(8): 2083-2098, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38284627

RESUMO

Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.


Assuntos
Exoesqueleto , Anti-Infecciosos , Animais , Biomimética , Flúor , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Apatitas/farmacologia , Zinco/farmacologia , Odontologia
5.
Nanomaterials (Basel) ; 13(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299661

RESUMO

Calcium phosphate-based coatings are widely studied in orthopedics and dentistry for their similarity to the mineral component of bone and their capability to promote osseointegration. Different calcium phosphates have tunable properties that result in different behaviors in vitro, but the majority of studies focus only on hydroxyapatite. Here, different calcium phosphate-based nanostructured coatings are obtained by ionized jet deposition, starting with hydroxyapatite, brushite and beta-tricalcium phosphate targets. The properties of the coatings obtained from different precursors are systematically compared by assessing their composition, morphology, physical and mechanical properties, dissolution, and in vitro behavior. In addition, for the first time, depositions at high temperature are investigated for the further tuning of the coatings mechanical properties and stability. Results show that different phosphates can be deposited with good composition fidelity even if not in a crystalline phase. All coatings are nanostructured and non-cytotoxic and display variable surface roughness and wettability. Upon heating, higher adhesion and hydrophilicity are obtained as well as higher stability, resulting in better cell viability. Interestingly, different phosphates show very different in vitro behavior, with brushite being the most suitable for promoting cell viability and beta-tricalcium phosphate having a higher impact on cell morphology at the early timepoints.

6.
J Biol Eng ; 17(1): 18, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879323

RESUMO

BACKGROUND: Bacterial colonisation on implantable device surfaces is estimated to cause more than half of healthcare-associated infections. The application of inorganic coatings onto implantable devices limits/prevents microbial contaminations. However, reliable and high-throughput deposition technologies and experimental trials of metal coatings for biomedical applications are missing. Here, we propose the combination of the Ionized Jet Deposition (IJD) technology for metal-coating application, with the Calgary Biofilm Device (CBD) for high-throughput antibacterial and antibiofilm screening, to develop and screen novel metal-based coatings. RESULTS: The films are composed of nanosized spherical aggregates of metallic silver or zinc oxide with a homogeneous and highly rough surface topography. The antibacterial and antibiofilm activity of the coatings is related with the Gram staining, being Ag and Zn coatings more effective against gram-negative and gram-positive bacteria, respectively. The antibacterial/antibiofilm effect is proportional to the amount of metal deposited that influences the amount of metal ions released. The roughness also impacts the activity, mostly for Zn coatings. Antibiofilm properties are stronger on biofilms developing on the coating than on biofilms formed on uncoated substrates. This suggests a higher antibiofilm effect arising from the direct contact bacteria-coating than that associated with the metal ions release. Proof-of-concept of application to titanium alloys, representative of orthopaedic prostheses, confirmed the antibiofilm results, validating the approach. In addition, MTT tests show that the coatings are non-cytotoxic and ICP demonstrates that they have suitable release duration (> 7 days), suggesting the applicability of these new generation metal-based coatings for the functionalization of biomedical devices. CONCLUSIONS: The combination of the Calgary Biofilm Device with the Ionized Jet Deposition technology proved to be an innovative and powerful tool that allows to monitor both the metal ions release and the surface topography of the films, which makes it suitable for the study of the antibacterial and antibiofilm activity of nanostructured materials. The results obtained with the CBD were validated with coatings on titanium alloys and extended by also considering the anti-adhesion properties and biocompatibility. In view of upcoming application in orthopaedics, these evaluations would be useful for the development of materials with pleiotropic antimicrobial mechanisms.

7.
Biomater Adv ; 144: 213231, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495842

RESUMO

Reconstruction of gradient organic/inorganic tissues is a challenging task in orthopaedics. Indeed, to mimic tissue characteristics and stimulate bone regeneration at the interface, it is necessary to reproduce both the mineral and organic components of the tissue ECM, as well as the micro/nano-fibrous morphology. To address this goal, we propose here novel biomimetic patches obtained by the combination of electrospinning and nanostructured bone apatite. In particular, we deposited apatite on the electrospun fibers by Ionized Jet Deposition, a plasma-assisted technique that allows conformal deposition and the preservation in the coating of the target's stoichiometry. The damage to the substrate and fibrous morphology is a polymer-dependent aspect, that can be avoided by properly selecting the substrate composition and deposition parameters. In fact, all the tested polymers (poly(l-lactide), poly(D,l-lactide-co-glycolide, poly(ε-caprolactone), collagen) were effectively coated, and the morphological and thermal characterization revealed that poly(ε-caprolactone) suffered the least damage. The coating of collagen fibers, on the other hand, destroyed the fiber morphology and it could only be performed when collagen is blended with a more resistant synthetic polymer in the nanofibers. Due to the biomimetic composition and multiscale morphology from micro to nano, the poly(ε-caprolactone)-collagen biomimetic patches coated with bone apatite supported MSCs adhesion, patch colonization and early differentiation, while allowing optimal viability. The biomimetic coating allowed better scaffold colonization, promoting cell spreading on the fibers.


Assuntos
Biomimética , Durapatita , Durapatita/química , Poliésteres , Colágeno/química , Polímeros , Apatitas
8.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144951

RESUMO

Aqueous solutions of diammonium hydrogen phosphate (DAP) have been recently proposed for consolidation of archeological bones, as an alternative to traditional products. Here, we investigated several routes to improve the performance of the DAP-based treatment, namely increasing the DAP concentration, adding calcium ions and adding ethanol to the DAP solution. Archaeological bones dated to about 1-0.8 million years ago were used for the tests. After preliminary screening by FTIR microscopy and FEG-SEM among different formulations, confirming the formation of new hydroxyapatite phases, the most promising formulation was selected, namely a 3 M DAP solution. The strengthening ability of this formulation was systematically compared to that of the most widely used commercial consolidant, namely Paraloid B72. The performance of the two treatments was evaluated in terms of Knoop and Vickers microhardness, resistance to scratch and resistance to material loss by peeling off. The results of the study show that the DAP treatment was able to improve the bone surface properties and also the resistance to material loss by peeling off, which is more dependent on in-depth consolidation. Paraloid B72 led to the formation of a layer of acrylic resin on the bone surface, which influenced the mechanical tests. Nonetheless, Paraloid B72 was able to penetrate in depth and substantially decrease the material loss by peeling off, even more effectively than DAP. The results of this study indicate that the potential of the DAP treatment for bone consolidation is confirmed.

9.
Antibiotics (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671256

RESUMO

Metal coatings represent good strategies to functionalize surfaces/devices and limit bacterial contamination/colonization thanks to their pleiotropic activity and their ability to prevent the biofilm formation. Here, we investigated the antibacterial and antibiofilm capacity of copper coatings deposited through the Ionized Jet Deposition (IJD) on the Calgary Biofilm Device (CBD) against the growth of two gram-negative and two gram-positive pathogenic strains. Three areas (i.e., (+)Cu, (++)Cu, and (+++)Cu based on the metal amount) on the CBD were obtained, presenting nanostructured coatings with high surface homogeneity and increasing dimensions of aggregates from the CBD periphery to the centre. The coatings in (++)Cu and (+++)Cu were efficient against the planktonic growth of the four pathogens. This antibacterial effect decreased in (+)Cu but was still significant for most of the pathogens. The antibiofilm efficacy was significant for all the strains and on both coated and uncoated surfaces in (+++)Cu, whereas in (++)Cu the only biofilms forming on the coated surfaces were inhibited, suggesting that the decrease of the metal on the coatings was associated to a reduced metal ion release. In conclusion, this work demonstrates that Cu coatings deposited by IJD have antibacterial and antibiofilm activity against a broad range of pathogens indicating their possible application to functionalize biomedical devices.

10.
Biology (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064398

RESUMO

Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young's elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.

11.
Mater Sci Eng C Mater Biol Appl ; 123: 112031, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812646

RESUMO

The choice of the appropriate material having suitable compositional and morphological surface characteristics, is a crucial step in the development of orthopedic implants. The purpose of this paper is to elucidate, on this regard, the influence of two important hits, i.e., biogenic apatite with bone-like composition and nanostructured morphology, providing the evidence of the efficacy of nanostructured biogenic apatite coatings in favoring adhesion, growth, proliferation, and in vitro osteogenic differentiation of human mesenchymal stromal cells (hMSCs) isolated from the bone marrow. The specific features of this coating in terms of topographical and biochemical cues, obtained by Ionized Jet Deposition, are perceived by hMSCs, as suggested by changes in different morphologic parameters as Aspect Ratio or Elongation index, suggesting the impact exerted by the nanostructure on early adhesion events, cytoskeleton organization, and cells fate. In addition, the nanostructured CaP coating sustained the metabolic activity of the cells and facilitated the osteogenic differentiation of MSC by supporting the osteogenesis-related gene expression. These findings support the use of a combined approach between technological advancement and instructive surfaces, both from the topographical and the biochemical point of view, in order to manufacture smart biomaterials able to respond to different needs of the orthopedic practice.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Biomimética , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteogênese , Propriedades de Superfície , Titânio
12.
Curr Biol ; 30(20): 3999-4008.e2, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32916116

RESUMO

Humans use rapid gaze shifts, known as saccades, to explore visual scenes. These movements yield abrupt luminance changes on the retina, which elicit robust neural discharges at fixation onsets. Yet little is known about the spatial content of saccade transients. Here, we show that saccades redistribute spatial information within the temporal range of retinal sensitivity following two distinct regimes: saccade modulations counterbalance (whiten) the spectral density of natural scenes at low spatial frequencies and follow the external power distribution at higher frequencies. This redistribution is a consequence of saccade dynamics, particularly the speed/amplitude/duration relation known as the main sequence. It resembles the redistribution resulting from inter-saccadic eye drifts, revealing a continuum in the modulations given by different eye movements, with oculomotor transitions primarily acting by regulating the bandwidth of whitening. Our findings suggest important computational roles for saccade transients in the establishment of spatial representations and lead to testable predictions about their consequences for visual functions and encoding mechanisms.


Assuntos
Movimentos Sacádicos/fisiologia , Processamento Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Estimulação Luminosa , Retina/fisiologia , Visão Ocular/fisiologia , Adulto Jovem
13.
Clin Biomech (Bristol, Avon) ; 68: 58-72, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31158591

RESUMO

BACKGROUND: Repair procedures and tissue engineering are solutions available in the clinical practice for the treatment of damaged articular cartilage. Regulatory bodies defined the requirements that any products, intended to regenerate cartilage, should have to be applied. In order to verify these requirements, the Food and Drug Administration (FDA, USA) and the International Standard Organization (ISO) indicated some Standard tests, which allow evaluating, in a reproducible way, the performances of scaffolds/treatments for cartilage tissue regeneration. METHODS: A review of the literature about cartilage mechanical characterization found 394 studies, from 1970 to date. They were classified by material (simulated/animal/human cartilage) and method (theoretical/applied; static/dynamic; standard/non-standard study), and analyzed by nation and year of publication. FINDINGS: While Standard methods for cartilage mechanical characterization still refer to studies developed in the eighties, expertise and interest on cartilage mechanics research are evolving continuously and internationally, with studies both in vitro - on human and animal tissues - and in silico, dealing with tissue function and modelling, using static and dynamic loading conditions. INTERPRETATION: there is a consensus on the importance of mechanical characterization that should be considered to evaluate cartilage treatments. Still, relative Standards need to be updated to describe advanced constructs and procedures for cartilage regeneration in a more exhaustive way. The use of the more complex, fibre-reinforced biphasic model, instead of the standard simple biphasic model, to describe cartilage response to loading, and the standardisation of dynamic tests can represent a first step in this direction.


Assuntos
Cartilagem Articular , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/lesões , Cartilagem Articular/fisiologia , Cartilagem Articular/cirurgia , Humanos , Modelos Biológicos , Engenharia Tecidual/normas , Engenharia Tecidual/tendências
14.
Med Eng Phys ; 69: 92-99, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31101484

RESUMO

In order to increase manufacturing and experimental efficiency, a certain degree of control over design performances before realization phase is recommended. In this context, this paper presents an integrated procedure to design 3D scaffolds for bone tissue engineering. The procedure required a combination of Computer Aided Design (CAD), Finite Element Analysis (FEA), and Design methodologies Of Experiments (DOE), firstly to understand the influence of the design parameters, and then to control them. Based on inputs from the literature and limitations imposed by the chosen manufacturing process (Precision Extrusion Deposition), 36 scaffold architectures have been drawn. The porosity of each scaffold has been calculated with CAD. Thereafter, a generic scaffold material was considered and its variable parameters were combined with the geometrical ones according to the Taguchi method, i.e. a DOE method. The compressive response of those principal combinations was simulated by FEA, and the influence of each design parameter on the scaffold compressive behaviour was clarified. Finally, a regression model was obtained correlating the scaffold's mechanical performances to its geometrical and material parameters. This model has been applied to a novel composite material made of polycaprolactone and innovative bioactive glass. By setting specific porosity (50%) and stiffness (0.05 GPa) suitable for trabecular bone substitutes, the model selected 4 of the 36 initial scaffold architectures. Only these 4 more promising geometries will be realized and physically tested for advanced indications on compressive strength and biocompatibility.


Assuntos
Osso e Ossos/citologia , Desenho Assistido por Computador , Análise de Elementos Finitos , Impressão Tridimensional , Engenharia Tecidual , Fenômenos Biomecânicos , Força Compressiva , Teste de Materiais
15.
J Mech Behav Biomed Mater ; 96: 79-87, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31029997

RESUMO

Osteochondral scaffolds are emerging as a promising alternative for articular cartilage regeneration, although with still controversial results. In particular, the restoration of the osteochondral interface remains an open challenge. The current available investigative procedures are not optimal to quantify the properties of this region, neither to evaluate the quality of the regenerated tissue with respect to the physiological one. This study investigates an advanced procedure able to quantitatively evaluate the mechanical gradient between stiff and compliant tissues, such as in the osteochondral region where the interface between hyaline and calcified cartilage (tidemark) plays an integral role in transferring articular loads from the compliant articular surface to the stiffer underlying bone. A series of nanoindentation line scans was performed along the tidemark - starting from hyaline and expanding across calcified cartilage - on histological sections derived from sheep osteochondral tissue regenerated by a three-layered biomimetic scaffold, as well as to the adjacent healthy tissue for comparative purposes. After an accurate assessment of the indentation parameters, a sigmoid curve-fit function was applied on the reduced modulus profiles to extract gap, width and regularity of the mechanical transition. The designed procedure succeeded in quantitatively assessing the transition between compliant and stiff regions, limiting experimental issues that generally affect the reliability of the indentation mechanical data, such as apex-blunt indenter tip effect, surface roughness, and influence of the substrate. Among the evaluated parameters, the mechanical gap highlighted the main difference between native and regenerated tissues. Thanks to the information retrievable through this procedure, this load transmission area can be further investigated, providing data to tailor osteochondral engineered tissues in the future.


Assuntos
Cartilagem Articular/citologia , Teste de Materiais/métodos , Nanotecnologia/métodos , Engenharia Tecidual , Animais , Biomimética , Ovinos , Alicerces Teciduais , Suporte de Carga
16.
Mater Sci Eng C Mater Biol Appl ; 99: 853-862, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889760

RESUMO

Biomimetic bone apatite coatings were realized for the first time by the novel Ionized Jet Deposition technique. Bone coatings were deposited on titanium alloy substrates by pulsed electron ablation of deproteinized bovine bone shafts in order to resemble bone apatite as closely as possible. The composition, morphology and mechanical properties of the coatings were characterized by GI-XRD, FT-IR, SEM-EDS, AFM, contact angle measurements, micro-scratch and screw-insertion tests. Different post-treatment annealing conditions (from 350 °C to 425 °C) were investigated. Bone apatite coatings exhibited a nanostructured surface morphology and a composition closely resembling that of the deposition target (i.e. natural bone apatite), also regarding the presence of magnesium and sodium ions. Crystallinity and composition of the coatings were strongly influenced by annealing temperature and duration; in particular, upon annealing at 400 °C and above, a crystallinity similar to that of bone was achieved. Finally, adhesion to the titanium substrate and hydrophilicity were significantly enhanced upon annealing, all characteristics being known to have a strong positive impact on promoting host cells attachment, proliferation and differentiation.


Assuntos
Materiais Biomiméticos/química , Durapatita/química , Próteses e Implantes , Ligas/farmacologia , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/farmacologia
17.
Curr Biol ; 27(9): 1268-1277, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28434862

RESUMO

Much evidence indicates that humans and other species process large-scale visual information before fine spatial detail. Neurophysiological data obtained with paralyzed eyes suggest that this coarse-to-fine sequence results from spatiotemporal filtering by neurons in the early visual pathway. However, the eyes are normally never stationary: rapid gaze shifts (saccades) incessantly alternate with slow fixational movements. To investigate the consequences of this oculomotor cycle on the dynamics of perception, we combined spectral analysis of visual input signals, neural modeling, and gaze-contingent control of retinal stimulation in humans. We show that the saccade/fixation cycle reformats the flow impinging on the retina in a way that initiates coarse-to-fine processing at each fixation. This finding reveals that the visual system uses oculomotor-induced temporal modulations to sequentially encode different spatial components and suggests that, rather than initiating coarse-to-fine processing, spatiotemporal coupling in the early visual pathway builds on the information dynamics of the oculomotor cycle.


Assuntos
Movimentos Oculares/fisiologia , Fixação Ocular/fisiologia , Estimulação Luminosa/métodos , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Humanos , Modelos Teóricos , Retina/citologia , Retina/fisiologia , Movimentos Sacádicos
18.
J Mater Sci Mater Med ; 27(3): 51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26758898

RESUMO

The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea/efeitos da radiação , Magnetismo , Animais , Colágeno , Durapatita , Fêmur , Masculino , Teste de Materiais , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais
19.
Vision Res ; 118: 60-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25687189

RESUMO

Like all saccades, microsaccades cause both spatial and temporal changes in the input to the retina. In space, recent studies have shown that these small shifts precisely relocate a narrow (smaller than the foveola) high-acuity retinal locus on the stimulus. However, it has long been questioned whether the temporal modulations resulting from microsaccades are also beneficial for vision. To address this question, we combined spectral analysis of the visual input to the retina with measurements of contrast sensitivity in humans. Estimation of how different types of eye movements redistribute the power of an otherwise stationary stimulus shows that small saccades contribute more temporal power than ocular drift in the low-frequency range, suggesting a specific role for these movements in the encoding of low spatial frequencies. However, an influence on contrast sensitivity was only found for saccades with amplitudes larger than 30'. Contrast thresholds remained highly similar in the presence and absence of smaller saccades. Furthermore, saccades of all amplitudes, including microsaccades, were strongly suppressed during exposure to the stimulus. These findings do not support an important function of the visual transients caused by microsaccades.


Assuntos
Sensibilidades de Contraste/fisiologia , Movimentos Sacádicos/fisiologia , Visão Ocular/fisiologia , Adulto , Atenção/fisiologia , Feminino , Fixação Ocular/fisiologia , Humanos , Estimulação Luminosa/métodos , Limiar Sensorial/fisiologia , Adulto Jovem
20.
J Mater Sci Mater Med ; 26(1): 5363, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25578711

RESUMO

Nanoindentation can provide new insights on the maturity stage of regenerating bone. The aim of the present study was the evaluation of the nanomechanical properties of newly-formed bone tissue at 4 weeks from the implantation of permanent magnets and magnetic scaffolds in the trabecular bone of rabbit femoral condyles. Three different groups have been investigated: MAG-A (NdFeB magnet + apatite/collagen scaffold with magnetic nanoparticles directly nucleated on the collagen fibers during scaffold synthesis); MAG-B (NdFeB magnet + apatite/collagen scaffold later infiltrated with magnetic nanoparticles) and MAG (NdFeB magnet). The mechanical properties of different-maturity bone tissues, i.e. newly-formed immature, newly-formed mature and native trabecular bone have been evaluated for the three groups. Contingent correlations between elastic modulus and hardness of immature, mature and native bone have been examined and discussed, as well as the efficacy of the adopted regeneration method in terms of "mechanical gap" between newly-formed and native bone tissue. The results showed that MAG-B group provided regenerated bone tissue with mechanical properties closer to that of native bone compared to MAG-A or MAG groups after 4 weeks from implantation. Further, whereas the mechanical properties of newly-formed immature and mature bone were found to be fairly good correlated, no correlation was detected between immature or mature bone and native bone. The reported results evidence the efficacy of nanoindentation tests for the investigation of the maturity of newly-formed bone not accessible through conventional analyses.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/patologia , Magnetismo , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Apatitas/química , Colágeno/química , Módulo de Elasticidade , Elasticidade , Fêmur/patologia , Fenômenos Magnéticos , Nanopartículas/química , Pressão , Coelhos , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...