Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(2): 963-987, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35723349

RESUMO

Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of -40.2, -35.1, -34.3 and -34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.

2.
J Biomol Struct Dyn ; 40(23): 12932-12947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34533095

RESUMO

Although Varicella or chickenpox infection which is caused by the varicella-zoster virus (VZV) has significantly been managed through vaccination, it remains an infection that poses threats to the nearest future due to therapeutic drawbacks. The focus of this research was geared towards in silico screening for the identification of novel compounds in plants of ethnopharmacological relevance in the treatment of chicken pox in West Africa. The work evaluated 65 compounds reported to be present in Achillea millefolium, Psidium guajava and Vitex doniana sweet to identify potential inhibitors of thymidine kinase, the primary drug target of varicella zoster virus. Out of the 65 compounds docked, 42 of these compounds were observed to possess binding energies lower than -7.0 kcal/mol, however only 20 were observed to form hydrogen bond interactions with the protein. These interactions were elucidated using LigPlot+ and MM-PBSA analysis with residue Ala134 predicted as critical for binding. Pharmacological profiling predicted three potential lead compounds comprising myricetin, apigenin- 4' -glucoside and Abyssinone V to possess good pharmacodynamics properties and negligibly toxic. The molecules were predicted as antivirals including anti-herpes and involved in mechanisms comprising inhibition of polymerase, ATPase and membrane integrity, which were corroborated previously in other viruses. These drug-like compounds are plausible biotherapeutic moieties for further biochemical and cell-based assaying to discover their potential for use against chickenpox. Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Herpesvirus Humano 3 , Compostos Fitoquímicos , Timidina Quinase , Humanos , Antivirais/farmacologia , Varicela/tratamento farmacológico , Varicela/prevenção & controle , Herpes Zoster/tratamento farmacológico , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3/efeitos dos fármacos , Timidina Quinase/antagonistas & inibidores , Etnofarmacologia , Compostos Fitoquímicos/farmacologia
3.
ScientificWorldJournal ; 2021: 6641128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935599

RESUMO

BACKGROUND: Till date, there is no known antidote to cure diabetes mellitus despite the discovery and development of diverse pharmacotherapeutic agents many years ago. Technological advancement in natural product chemistry has led to the isolation of analogs of vitexin and isovitexin found in diverse bioresources. These compounds have been extensively studied to explore their pharmacological relevance in diabetes mellitus. Aim of the Study. The present review was to compile results from in vitro and in vivo studies performed with vitexin and isovitexin derivatives relating to diabetes mellitus and its complications. A systematic online literature query was executed to collect all relevant articles published up to March 2020. RESULTS: In this piece, we have collected data and presented it in a one-stop document to support the multitargeted mechanistic actions of vitexin and isovitexin in controlling diabetes mellitus and its complications. CONCLUSION: Data collected hint that vitexin and isovitexin work by targeting diverse pathophysiological and metabolic pathways and molecular drug points involved in the clinical manifestations of diabetes mellitus. This is expected to provide a deeper understanding of its actions and also serve as a catapult for clinical trials and application research.


Assuntos
Apigenina/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Animais , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31118963

RESUMO

BACKGROUND: Available data indicate that diabetes mellitus leads to elevated cost of healthcare. This imposes a huge economic burden on households, societies, and nations. As a result many Ghanaians, especially rural folks, resort to the use of phytomedicine, which is relatively less expensive. This paper aims at obtaining information on plants used in Ghana to treat diabetes mellitus, gather and present evidence-based data available to support their uses and their mechanisms of action, and identify areas for future research. METHOD: A catalogue of published textbooks, monographs, theses, and peer-reviewed articles of plants used in Ghanaian traditional medicine between 1987 and July 2018 for managing diabetes mellitus was obtained and used. RESULTS: The review identified 76 plant species belonging to 45 families that are used to manage diabetes mellitus. Leaves were the part of the plants frequently used for most preparation (63.8%) and were mostly used as decoctions. Majority of the plants belonged to the Euphorbiaceae, Lamiaceae, Asteraceae, and Apocynaceae families. Pharmacological data were available on 23 species that have undergone in vitro studies. Forty species have been studied using in vivo animal models. Only twelve plants and their bioactive compounds were found with data on both preclinical and clinical studies. The records further indicate that medicinal plants showing antidiabetic effects did so via biochemical mechanisms such as restitution of pancreatic ß-cell function, improvement in insulin sensitivity by receptors, stimulating rate of insulin secretion, inhibition of liver gluconeogenesis, enhanced glucose absorption, and inhibition of G-6-Pase, α-amylase, and α-glucosidase activities. CONCLUSION: This review contains information on medicinal plants used to manage diabetes mellitus, including their pharmacological properties and mechanisms of action as well as models used to investigate them. It also provides gaps that can form the basis for further investigations and development into useful medications for effective treatment of diabetes mellitus.

5.
Scientifica (Cairo) ; 2019: 3732687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082693

RESUMO

Costus afer (C. afer) is a plant commonly known as ginger lily, spiral ginger, or bush cane. It is reportedly used in traditional medicine practice (TMP) to treat and manage many ailments including diabetes mellitus, stomach ache, arthritis, inflammation, and gout. These purported ethnomedicinal uses have triggered many research studies on the plant to amass scientific evidence. However, these research reports are scattered, and thus, this systematic review seeks to provide a comprehensive update on it covering its traditional uses, phytochemical and nutritional constituents, pharmacological activities, and toxicological effects. An online search was done using search engines such as Google Scholar, PubMed, and ScienceDirect from the period 1970 to 2019. The online search included the use of keywords, "Costus afer Ker-Gawl" or "Costus afer." The search revealed that the stem and leaves of the plant contain substantial amounts of micronutrients and macronutrients. The leaves, stem, rhizomes, and roots of C. afer contain several steroidal sapogenins, aferosides, dioscin, and paryphyllin C and flavonoid glycoside kaempferol-3-O-α-L-rhamnopyranoside. Experimental studies on various parts of the plant showed bioactivities such as antihyperglycemic, hepatocellular protection, cardioprotection, nephroprotection, testicular protection, CNS depressant, analgesic, antiarthritis, antibacterial, and antioxidant. Based on these evident data, it is concluded that the plant could be used as an alternative and complementary therapy for many oxidative stress-related diseases, provided further scientific studies on the toxicological and pharmacological aspects are carried out.

6.
Colloids Surf B Biointerfaces ; 147: 387-396, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559997

RESUMO

HIF-1α and LDH-A are important targets for hypoxia-driven drug resistance. Mitochondria targeted fluorescent manganese(II)-complexes can be used as potential fluorescence imaging agents, MRI contrast agents and HIF-1α and LDH-A involved anticancer complexes. In this study, a fluorescent manganese(II) nanoparticle, labeled as (PEG-Mn-BDA), was synthesized and used as both fluorescent and MRI imaging agents in cancer cells. In vitro bioassay results indicate that PEG-Mn-BDA was able to inhibit LDH-A activity and depolarize mitochondrial membrane potential with the generation of intracellular ROS, which contributed to the induction of apoptosis. Moreover, the pro-apoptotic protein, caspase 3 was highly expressed. In vivo, PEG-Mn-BDA could also exert inhibition on a mouse hepatocellular carcinoma xenograft. These results suggest that mitochondria targeted PEG-Mn-BDA was able to simultaneously induce selective inhibition on cancer cells and a mouse carcinoma xenograft, label cancer cells with fluorescence and enhance MRI contrast. Therefore, PEG-Mn-BDA is a good candidate for cancer treatment and imaging.


Assuntos
Compostos de Boro/química , Proliferação de Células/efeitos dos fármacos , Diagnóstico por Imagem/métodos , L-Lactato Desidrogenase/química , Mitocôndrias/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Feminino , Corantes Fluorescentes/química , Humanos , Isoenzimas/química , Lactato Desidrogenase 5 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Artigo em Inglês | MEDLINE | ID: mdl-27104676

RESUMO

Lactate dehydrogenase A (LDH-A) is a potentially important metabolic target for the inhibition of the highly activated glycolysis pathway in cancer cells. In order to develop bifunctional compounds as inhibitor of LDH-A and anticancer agents, two pyrrol-2-yl methanone (or ethanone) derivatives (PM1 and PM2) were synthesized and evaluated as inhibitors of LDH-A based on the enzyme assay and cell assay by spectroscopy analysis. Fluorescence and CD spectra results demonstrated that both the change of second structure of LDH-A and the affinity interaction for compounds to LDH-A gave great effect on the activity of LDH-A. In particular, low concentration of compounds (1µµ-25µµ) could change the level of pyruvate in cancer cells. Moreover, the in vitro assay results demonstrated that pyrrol-2-yl ethanone derivatives can inhibit the proliferation of cancer cells. Therefore, pyrrol-2-yl ethanone derivatives (PM2) can be both LDH-A inhibitor and anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Pirróis/química , Pirróis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácido Pirúvico/metabolismo
8.
J Inorg Biochem ; 159: 1-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26901626

RESUMO

Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments.


Assuntos
Compostos de Boro , Cobalto , Grafite , Peróxido de Hidrogênio/farmacologia , Luz , Antineoplásicos , Compostos de Boro/química , Compostos de Boro/farmacologia , Cobalto/química , Cobalto/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Grafite/química , Grafite/farmacologia , Células Hep G2 , Humanos
9.
Food Chem ; 176: 403-10, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25624249

RESUMO

Rapid analysis of cocoa beans is an important activity for quality assurance and control investigations. In this study, Fourier transform near infrared spectroscopy (FT-NIRS) and chemometric techniques were attempted to estimate cocoa bean quality categories, pH and fermentation index (FI). The performances of the models were optimised by cross-validation and examined by identification rate (%), correlation coefficient (Rpre) and root mean square error of prediction (RMSEP) in the prediction set. The optimal identification model by back propagation artificial neural network (BPANN) was 99.73% at 5 principal components. The efficient variable selection model derived by synergy interval back propagation artificial neural network regression (Si-BPANNR) was superior for pH and FI estimation. Si-BPANNR model for pH was Rpre=0.98 and RMSEP=0.06, while for FI was Rpre=0.98 and RMSEP=0.05. The results demonstrated that FT-NIRS together with BPANN and Si-BPANNR model could successfully be used for cocoa beans examination.


Assuntos
Cacau/química , Análise de Componente Principal/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...