Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 868, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964968

RESUMO

Pancreas disease caused by salmonid alphaviruses leads to severe losses in Atlantic salmon aquaculture. The aim of our study was to gain a better understanding of the biological differences between salmon with high and low genomic breeding values (H-gEBV and L-gEBV respectively) for pancreas disease resistance. Fish from H- and L-gEBV families were challenged by intraperitoneal injection of salmonid alphavirus or co-habitation with infected fish. Mortality was higher with co-habitation than injection, and for L- than H-gEBV. Heart for RNA-seq and histopathology was collected before challenge and at four- and ten-weeks post-challenge. Heart damage was less severe in injection-challenged H- than L-gEBV fish at week 4. Viral load was lower in H- than L-gEBV salmon after co-habitant challenge. Gene expression differences between H- and L-gEBV manifested before challenge, peaked at week 4, and moderated by week 10. At week 4, H-gEBV salmon showed lower expression of innate antiviral defence genes, stimulation of B- and T-cell immune function, and weaker stress responses. Retarded resolution of the disease explains the higher expression of immune genes in L-gEBV at week 10. Results suggest earlier mobilization of acquired immunity better protects H-gEBV salmon by accelerating clearance of the virus and resolution of the disease.


Assuntos
Infecções por Alphavirus/veterinária , Resistência à Doença/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Coração/fisiologia , Pancreatopatias/veterinária , Salmo salar/genética , Infecções por Alphavirus/mortalidade , Infecções por Alphavirus/virologia , Animais , Aquicultura , Cruzamento , Doenças dos Peixes/mortalidade , Doenças dos Peixes/virologia , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Coração/virologia , Pancreatopatias/mortalidade , Pancreatopatias/virologia , Salmo salar/virologia , Transcriptoma
2.
J Dairy Sci ; 101(7): 6174-6189, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29605329

RESUMO

Milk infrared spectra are routinely used for phenotyping traits of interest through links developed between the traits and spectra. Predicted individual traits are then used in genetic analyses for estimated breeding value (EBV) or for phenotypic predictions using a single-trait mixed model; this approach is referred to as indirect prediction (IP). An alternative approach [direct prediction (DP)] is a direct genetic analysis of (a reduced dimension of) the spectra using a multitrait model to predict multivariate EBV of the spectral components and, ultimately, also to predict the univariate EBV or phenotype for the traits of interest. We simulated 3 traits under different genetic (low: 0.10 to high: 0.90) and residual (zero to high: ±0.90) correlation scenarios between the 3 traits and assumed the first trait is a linear combination of the other 2 traits. The aim was to compare the IP and DP approaches for predictions of EBV and phenotypes under the different correlation scenarios. We also evaluated relationships between performances of the 2 approaches and the accuracy of calibration equations. Moreover, the effect of using different regression coefficients estimated from simulated phenotypes (ßp), true breeding values (ßg), and residuals (ßr) on performance of the 2 approaches were evaluated. The simulated data contained 2,100 parents (100 sires and 2,000 cows) and 8,000 offspring (4 offspring per cow). Of the 8,000 observations, 2,000 were randomly selected and used to develop links between the first and the other 2 traits using partial least square (PLS) regression analysis. The different PLS regression coefficients, such as ßp, ßg, and ßr, were used in subsequent predictions following the IP and DP approaches. We used BLUP analyses for the remaining 6,000 observations using the true (co)variance components that had been used for the simulation. Accuracy of prediction (of EBV and phenotype) was calculated as a correlation between predicted and true values from the simulations. The results showed that accuracies of EBV prediction were higher in the DP than in the IP approach. The reverse was true for accuracy of phenotypic prediction when using ßp but not when using ßg and ßr, where accuracy of phenotypic prediction in the DP was slightly higher than in the IP approach. Within the DP approach, accuracies of EBV when using ßg were higher than when using ßp only at the low genetic correlation scenario. However, we found no differences in EBV prediction accuracy between the ßp and ßg in the IP approach. Accuracy of the calibration models increased with an increase in genetic and residual correlations between the traits. Performance of both approaches increased with an increase in accuracy of the calibration models. In conclusion, the DP approach is a good strategy for EBV prediction but not for phenotypic prediction, where the classical PLS regression-based equations or the IP approach provided better results.


Assuntos
Bovinos/genética , Leite/química , Modelos Genéticos , Fenótipo , Animais , Cruzamento , Calibragem , Feminino , Genótipo , Análise dos Mínimos Quadrados
3.
J Dairy Sci ; 100(7): 5479-5490, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527809

RESUMO

Genomic selection may accelerate genetic progress in breeding programs of indicine breeds when compared with traditional selection methods. We present results of genomic predictions in Gyr (Bos indicus) dairy cattle of Brazil for milk yield (MY), fat yield (FY), protein yield (PY), and age at first calving using information from bulls and cows. Four different single nucleotide polymorphism (SNP) chips were studied. Additionally, the effect of the use of imputed data on genomic prediction accuracy was studied. A total of 474 bulls and 1,688 cows were genotyped with the Illumina BovineHD (HD; San Diego, CA) and BovineSNP50 (50K) chip, respectively. Genotypes of cows were imputed to HD using FImpute v2.2. After quality check of data, 496,606 markers remained. The HD markers present on the GeneSeek SGGP-20Ki (15,727; Lincoln, NE), 50K (22,152), and GeneSeek GGP-75Ki (65,018) were subset and used to assess the effect of lower SNP density on accuracy of prediction. Deregressed breeding values were used as pseudophenotypes for model training. Data were split into reference and validation to mimic a forward prediction scheme. The reference population consisted of animals whose birth year was ≤2004 and consisted of either only bulls (TR1) or a combination of bulls and dams (TR2), whereas the validation set consisted of younger bulls (born after 2004). Genomic BLUP was used to estimate genomic breeding values (GEBV) and reliability of GEBV (R2PEV) was based on the prediction error variance approach. Reliability of GEBV ranged from ∼0.46 (FY and PY) to 0.56 (MY) with TR1 and from 0.51 (PY) to 0.65 (MY) with TR2. When averaged across all traits, R2PEV were substantially higher (R2PEV of TR1 = 0.50 and TR2 = 0.57) compared with reliabilities of parent averages (0.35) computed from pedigree data and based on diagonals of the coefficient matrix (prediction error variance approach). Reliability was similar for all the 4 marker panels using either TR1 or TR2, except that imputed HD cow data set led to an inflation of reliability. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information. A reduced panel of ∼15K markers resulted in reliabilities similar to using HD markers. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information.


Assuntos
Genômica/normas , Técnicas de Genotipagem/veterinária , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Seleção Artificial/genética , Fatores Etários , Animais , Brasil , Bovinos , Indústria de Laticínios , Feminino , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem/métodos , Lactação , Gotículas Lipídicas , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Gravidez , Reprodutibilidade dos Testes
4.
J Dairy Sci ; 98(7): 4969-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958293

RESUMO

Genotype imputation is widely used as a cost-effective strategy in genomic evaluation of cattle. Key determinants of imputation accuracies, such as linkage disequilibrium patterns, marker densities, and ascertainment bias, differ between Bos indicus and Bos taurus breeds. Consequently, there is a need to investigate effectiveness of genotype imputation in indicine breeds. Thus, the objective of the study was to investigate strategies and factors affecting the accuracy of genotype imputation in Gyr (Bos indicus) dairy cattle. Four imputation scenarios were studied using 471 sires and 1,644 dams genotyped on Illumina BovineHD (HD-777K; San Diego, CA) and BovineSNP50 (50K) chips, respectively. Scenarios were based on which reference high-density single nucleotide polymorphism (SNP) panel (HDP) should be adopted [HD-777K, 50K, and GeneSeek GGP-75Ki (Lincoln, NE)]. Depending on the scenario, validation animals had their genotypes masked for one of the lower-density panels: Illumina (3K, 7K, and 50K) and GeneSeek (SGGP-20Ki and GGP-75Ki). We randomly selected 171 sires as reference and 300 as validation for all the scenarios. Additionally, all sires were used as reference and the 1,644 dams were imputed for validation. Genotypes of 98 individuals with 4 and more offspring were completely masked and imputed. Imputation algorithms FImpute and Beagle v3.3 and v4 were used. Imputation accuracies were measured using the correlation and allelic correct rate. FImpute resulted in highest accuracies, whereas Beagle 3.3 gave the least-accurate imputations. Accuracies evaluated as correlation (allelic correct rate) ranged from 0.910 (0.942) to 0.961 (0.974) using 50K as HDP and with 3K (7K) as low-density panels. With GGP-75Ki as HDP, accuracies were moderate for 3K, 7K, and 50K, but high for SGGP-20Ki. The use of HD-777K as HDP resulted in accuracies of 0.888 (3K), 0.941 (7K), 0.980 (SGGP-20Ki), 0.982 (50K), and 0.993 (GGP-75Ki). Ungenotyped individuals were imputed with an average accuracy of 0.970. The average top 5 kinship coefficients between reference and imputed individuals was a strong predictor of imputation accuracy. FImpute was faster and used less memory than Beagle v4. Beagle v4 outperformed Beagle v3.3 in accuracy and speed of computation. A genotyping strategy that uses the HD-777K SNP chip as a reference panel and SGGP-20Ki as the lower-density SNP panel should be adopted as accuracy was high and similar to that of the 50K. However, the effect of using imputed HD-777K genotypes from the SGGP-20Ki on genomic evaluation is yet to be studied.


Assuntos
Bovinos/genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA