Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 294(3): 350-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752662

RESUMO

Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community's capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.


Assuntos
Microscopia , Pesquisa Biomédica/métodos , Gerenciamento de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos
2.
Nat Commun ; 14(1): 7418, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973798

RESUMO

Retinotopy, like all long-range projections, can arise from the axons themselves or their targets. The underlying connectivity pattern, however, remains elusive at the fine scale in the mammalian brain. To address this question, we functionally mapped the spatial organization of the input axons and target neurons in the female mouse retinocollicular pathway at single-cell resolution using in vivo two-photon calcium imaging. We found a near-perfect retinotopic tiling of retinal ganglion cell axon terminals, with an average error below 30 µm or 2° of visual angle. The precision of retinotopy was relatively lower for local neurons in the superior colliculus. Subsequent data-driven modeling ascribed it to a low input convergence, on average 5.5 retinal ganglion cell inputs per postsynaptic cell in the superior colliculus. These results indicate that retinotopy arises largely from topographically precise input from presynaptic cells, rather than elaborating local circuitry to reconstruct the topography by postsynaptic cells.


Assuntos
Retina , Colículos Superiores , Camundongos , Animais , Feminino , Colículos Superiores/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Terminações Pré-Sinápticas , Vias Visuais , Mamíferos
3.
Elife ; 122023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922200

RESUMO

The structure and function of the vertebrate retina have been extensively studied across species with an isolated, ex vivo preparation. Retinal function in vivo, however, remains elusive, especially in awake animals. Here, we performed single-unit extracellular recordings in the optic tract of head-fixed mice to compare the output of awake, anesthetized, and ex vivo retinas. While the visual response properties were overall similar across conditions, we found that awake retinal output had in general (1) faster kinetics with less variability in the response latencies; (2) a larger dynamic range; and (3) higher firing activity, by ~20 Hz on average, for both baseline and visually evoked responses. Our modeling analyses further showed that such awake response patterns convey comparable total information but less efficiently, and allow for a linear population decoder to perform significantly better than the anesthetized or ex vivo responses. These results highlight distinct retinal behavior in awake states, in particular suggesting that the retina employs dense coding in vivo, rather than sparse efficient coding as has been often assumed from ex vivo studies.


When light enters the eyes, it is focused onto the retina, a thin layer of brain tissue at the back of the eye. The retina converts light information into electrical signals that are transmitted to the rest of the brain to perceive vision. Unlike the rest of the brain, this light-processing tissue can continue working even when removed from an animal, making it easier for scientists to study how the retina works. This has helped it become one of the best-understood parts of the brain. Most knowledge of retinal signal processing comes from studies of isolated retinas. However, it was still unclear if these samples behave the same way as they do in live animals, and whether findings in isolated retinas apply to natural visual processing in an awake state. To determine this, Boissonnet et al. compared the visual responses of the retina in awake mice, anesthetised mice and when isolated from mice. Measurements of retinal electrical signals showed that awake mice responded to light substantially more quickly and strongly than the others. Computational analysis suggested that the amount of information carried to the brain was largely comparable across the different subjects, but the retina in awake mice used more energy. The findings indicate that further studies are needed to better understand how the retina processes visual information in awake animals, rather than just in isolated conditions. Progressing this understanding could ultimately help to develop prosthetic devices that can act as a retina in the future.


Assuntos
Retina , Vigília , Camundongos , Animais , Vigília/fisiologia , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...