Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(1): 188-204, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175048

RESUMO

We present the experimental realization of an innovative parallel partially overlapping waveguides (PO-WGs) model grounded in the thermal accumulated regime and fabricated using femtosecond (fs) laser direct-writing within low-iron bulk glass. The 75mm long novel PO-WGs model was made by partially overlapping the shell parts of two core-shell types of waveguides via a back-and-forth single pass fs-laser inscription. The detailed evolution of the PO-WGs model from inception to completion was offered, accompanying by a thorough characterization, which unveils a substantial refractive index (RI) change, on the order of 10-3, alongside low propagation loss (0.2 dB/cm) and distinctive features associated with the single mode and shell-guided light. Notably, the unsaturated performance of PO-WGs model after the primary inscription paves the way for potential applications in the successful creation of two distinctive types of Bragg gratings: first-order dot-Bragg grating and second-order line-Bragg grating. The 75 mm long dot-Bragg grating was written by a periodic dot array with a height of 6 µm atop the PO-WGs, and the birefringence was measured of 1.5 × 10-5 with a 16 pm birefringence-induced wavelength difference. The line-Bragg grating, which was inscribed with dual PO-WGs extending the line grating part to 40 mm in length along its period for increasing the transmission dip, exhibits a pronounced polarization dependence showcasing an effective birefringence of 4.2 × 10-4 at the birefringence-induced wavelength difference of 0.45 nm. We delved into the slow-light effects of the two Bragg gratings thoroughly, which the theoretical analysis revealed an effective group delay of 0.58 ns (group index 2.3) for the dot-Bragg grating. Similarly, the line-Bragg grating exhibited an effective group delay of 0.3 ns (group index 2.3), in good agreement with experimental measurements. These findings underscore the exciting potential of our gratings for creating optical slow-wave structures, particularly for future on-chip applications.

2.
ACS Omega ; 8(36): 32340-32351, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720752

RESUMO

Herein, we have characterized in depth the effect of femtosecond (fs)-laser writing on various polydimethylsiloxane (PDMS)-based composites. The study combines systematic and nanoscale characterizations for the PDMS blends that include various photoinitiators (organic and inorganic agents) before and after fs-laser writing. The results exhibit that the photoinitiators can dictate the mechanical properties of the PDMS, in which Young's modulus of PDMS composites has higher elasticity. The study illustrates a major improvement in refractive index change by 15 times higher in the case of PDMS/BP-Ge [benzophenone (BP) allytriethylgermane] and Irgacure 184. Additional enhancement was achieved in the optical performance levels of the PDMS composites (the PDMS composites of Irgacure 184/500, BP-Ge, and Ge-ATEG have a relative difference of less than 5% in comparison with pristine PDMS), which are on par with glasses. This insightful study can guide future investigators in choosing photoinitiators for particular applications in photonics and polymer chemistry.

3.
Sci Rep ; 13(1): 13717, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608059

RESUMO

In this work we demonstrate the integration of a spectrometer directly into smartphone screen by femtosecond laser inscription of a weak Raman-Nath volume grating either into the Corning Gorilla glass screen layer or in the tempered aluminosilicate glass protector screen placed in front of the phone camera. Outside the thermal accumulation regime, a new writing regime yielding positive refractive index change was found for both glasses which is fluence dependent. The upper-bound threshold for this thermal-accumulation-less writing regime was found for both glasses and were, respectively at a repetition rate less than 150 kHz and 101 kHz for fluence of 8.7 × 106 J/m2 and 1.4 × 107 J/m2. A weak volume Raman-Nath grating of dimension 0.5 by 3 mm and 3 µm pitch was placed in front of a Samsung Galaxy S21 FE cellphone to record the spectrum using the 2nd diffraction order. This spectrometer covers the visible band from 401 to 700 nm with a 0.4 nm/pixel detector resolution and 3 nm optical resolution. It was used to determine the concentration detection limit of Rhodamine 6G in water which was found to be 0.5 mg/L. This proof of concept paves the way to in-the-field absorption spectroscopy for quick information gathering.

4.
Opt Express ; 30(17): 30405-30419, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242145

RESUMO

Femtosecond laser direct-writing is an attractive technique to fabricate fiber Bragg gratings and to achieve through-the-coating inscription. In this article, we report the direct inscription of high-quality first-order gratings in optical fiber, without the use of an index-matching medium. A new alignment technique based on the inscription of weak probe gratings is used to track the relative position between the focal spot and fiber core. A simple and flexible method to precisely control the position of each grating plane is also presented. With this method, periodic phase modulation of grating structures is achieved and used to inscribe arbitrary apodization and phase profiles. It is shown that a burst of multiple laser pulses used to inscribe each grating plane leads to a significant increase in the grating strength, while maintaining low insertion loss, critical for many applications.

5.
Sci Rep ; 12(1): 1623, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102176

RESUMO

This study aims at identifying compounds incorporated into Polydimethylsiloxane (PDMS) which produce large refractive index change under fs laser exposition, potentially leading to optimal writing of waveguides or photonic devices in such a soft host. Germanium derivative, titania and zirconite derivatives, benzophenone (Bp), irgacure-184/500/1173 and 2959 are investigated. We show a mapping of the RI index change relative to the writing speed (1 to 40 mm/s), the repetition rate (606 to 101 kHz) and the number of passes (1 to 8) from which we establish quantitative parameters to allow the comparison between samples. We show that the organic materials, especially irgacure-184 and benzophenone yield a significantly higher maximum refractive index change in the order of 10-2. We also show that the strongest photosensitivity is achieved with a mixture of organic/organo-metallic material of Bp + Ge. We report a synergetic effect on photosensitivity of this novel mixture.

6.
Sci Rep ; 11(1): 16803, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413334

RESUMO

We report the structural and optical properties of Nd:YAB (NdxY1-x Al3(BO3)4)-nanoparticle-doped PDMS elastomer films for random lasing (RL) applications. Nanoparticles with Nd ratios of x = 0.2, 0.4, 0.6, 0.8, and 1.0 were prepared and then incorporated into the PDMS elastomer to control the optical gain density and scattering center content over a wide range. The morphology and thermal stability of the elastomer composites were studied. A systematic investigation of the lasing wavelength, threshold, and linewidth of the laser was carried out by tailoring the concentration and optical gain of the scattering centers. The minimum threshold and linewidth were found to be 0.13 mJ and 0.8 nm for x = 1 and 0.8. Furthermore, we demonstrated that the RL intensity was easily tuned by controlling the degree of mechanical stretching, with strain reaching up to 300%. A strong, repeatable lasing spectrum over ~ 50 cycles of applied strain was observed, which demonstrates the high reproducibility and robustness of the RL. In consideration for biomedical applications that require long-term RL stability, we studied the intensity fluctuation of the RL emission, and confirmed that it followed Lévy-like statistics. Our work highlights the importance of using rare-earth doped nanoparticles with polymers for RL applications.

7.
Sci Rep ; 11(1): 13182, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162986

RESUMO

A simple novel method for random number generation is presented, based on a random Raman fiber laser. This laser is built in a half-open cavity scheme, closed on one side by a narrow-linewidth 100 mm fiber Bragg grating. The interaction between the randomly excited lasing modes of this laser, in addition to nonlinear effects such as modulation instability, allow the generation of random bits at rates of up to 540 Gbps with minimal post processing. Evaluation of the resulting bit streams' randomness by the NIST statistical test suite highlights the importance of evaluating the physical entropy content, as bit sequences generated by this random laser pass all the statistical tests with a significance level of 0.01, despite being generated at more than twice the theoretical entropy generation speed.

8.
Cancers (Basel) ; 13(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494434

RESUMO

Radiotherapy (RT) is a key component of cancer treatment. Most of the time, radiation is given after surgery but for soft-tissue sarcomas (STS), pre-surgical radiation is commonly utilized. However, despite improvements in RT accuracy, the rate of local recurrence remains high and is the major cause of death for patients with STS. A better understanding of cell fates in response to RT could provide new therapeutic options to enhance tumour cell killing by RT and facilitate surgical resection. Here, we showed that irradiated STS cell cultures do not die but instead undergo therapy-induced senescence (TIS), which is characterized by proliferation arrest, senescence-associated ß-galactosidase activity, secretion of inflammatory cytokines and persistent DNA damage. STS-TIS was also associated with increased levels of the anti-apoptotic Bcl-2 family of proteins which rendered cells targetable using senolytic Bcl-2 inhibitors. As oppose to radiation alone, the addition of senolytic agents Venetoclax (ABT-199) or Navitoclax (ABT-263) after irradiation induced a rapid apoptotic cell death in STS monolayer cultures and in a more complex three-dimensional culture model. Together, these data suggest a new promising therapeutic approach for sarcoma patients who receive neoadjuvant RT. The addition of senolytic agents to radiation treatments may significantly reduce tumour volume prior to surgery and thereby improve the clinical outcome of patients.

9.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033118

RESUMO

Cancer therapy has evolved to a more targeted approach and often involves drug combinations to achieve better response rates. Non-thermal plasma (NTP), a technology rapidly expanding its application in the medical field, is a near room temperature ionized gas capable of producing reactive species, and can induce cancer cell death both in vitro and in vivo. Here, we used proliferation assay to characterize the plasma sensitivity of fourteen breast cancer cell lines. These assays showed that all tested cell lines were sensitive to NTP. In addition, a good correlation was found comparing cell sensitivity to NTP and radiation therapy (RT), where cells that were sensitive to RT were also sensitive to plasma. Moreover, in some breast cancer cell lines, NTP and RT have a synergistic effect. Adding a dose of PARP-inhibitor olaparib to NTP treatment always increases the efficacy of the treatment. Olaparib also exhibits a synergistic effect with NTP, especially in triple negative breast cancer cells. Results presented here help elucidate the position of plasma use as a potential breast cancer treatment.

10.
Opt Express ; 27(3): 2488-2498, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732286

RESUMO

Laser-written waveguides in glass have many potential applications as photonic devices. However, there is little knowledge of the actual profile of the usually asymmetric refractive index (RI) change across the femtosecond (fs) laser-written waveguides. We show, here, a new nondestructive method to measure any symmetric or asymmetric two-dimensional RI profile of fs laser-written waveguides in transparent materials. The method is also suitable for the measurement of the RI profile of any other type of waveguide. A Mach-Zehnder interferometer is used to obtain the phase shift of light propagating transversely through the RI-modified region. A genetic algorithm is then used to determine the matching cross-sectional RI profile based on the known waveguide shape and dimensions. A validation of the method with the comparison to a RNF measurement of the industry-standard SMF-28 is presented, as well as a demonstration of its versatility with measurements on fs laser-written waveguides.

11.
Biomed Opt Express ; 8(4): 2210-2221, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736666

RESUMO

We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

12.
Opt Lett ; 41(8): 1865-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082365

RESUMO

We demonstrate a simple technique for implementing long period grating (LPG) structures by the use of a 3D printer. This Letter shows a way of manipulating the mode coupling within an optical fiber by applying stress through an external 3D printed periodic structure. Different LPG lengths and periods have been studied, as well as the effect of the applied stress on the coupling efficiency from the fundamental mode to cladding modes. The technique is very simple, highly flexible, affordable, and easy to implement without the need of altering the optical fiber. This Letter is part of a growing line of interest in the use of 3D printers for optical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...