Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(6): e13709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884022

RESUMO

Predicting the risk of establishment and spread of populations outside their native range represents a major challenge in evolutionary biology. Various methods have recently been developed to estimate population (mal)adaptation to a new environment with genomic data via so-called Genomic Offset (GO) statistics. These approaches are particularly promising for studying invasive species but have still rarely been used in this context. Here, we evaluated the relationship between GO and the establishment probability of a population in a new environment using both in silico and empirical data. First, we designed invasion simulations to evaluate the ability to predict establishment probability of two GO computation methods (Geometric GO and Gradient Forest) under several conditions. Additionally, we aimed to evaluate the interpretability of absolute Geometric GO values, which theoretically represent the adaptive genetic distance between populations from distinct environments. Second, utilizing public empirical data from the crop pest species Bactrocera tryoni, a fruit fly native from Northern Australia, we computed GO between "source" populations and a diverse range of locations within invaded areas. This practical application of GO within the context of a biological invasion underscores its potential in providing insights and guiding recommendations for future invasion risk assessment. Overall, our results suggest that GO statistics represent good predictors of the establishment probability and may thus inform invasion risk, although the influence of several factors on prediction performance (e.g., propagule pressure or admixture) will need further investigation.

2.
Genet Sel Evol ; 55(1): 13, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864379

RESUMO

BACKGROUND: Numerous genomic scans for positive selection have been performed in livestock species within the last decade, but often a detailed characterization of the detected regions (gene or trait under selection, timing of selection events) is lacking. Cryopreserved resources stored in reproductive or DNA gene banks offer a great opportunity to improve this characterization by providing direct access to recent allele frequency dynamics, thereby differentiating between signatures from recent breeding objectives and those related to more ancient selection constraints. Improved characterization can also be achieved by using next-generation sequencing data, which helps narrowing the size of the detected regions while reducing the number of associated candidate genes. METHODS: We estimated genetic diversity and detected signatures of recent selection in French Large White pigs by sequencing the genomes of 36 animals from three distinct cryopreserved samples: two recent samples from dam (LWD) and sire (LWS) lines, which had diverged from 1995 and were selected under partly different objectives, and an older sample from 1977 prior to the divergence. RESULTS: French LWD and LWS lines have lost approximately 5% of the SNPs that segregated in the 1977 ancestral population. Thirty-eight genomic regions under recent selection were detected in these lines and the corresponding selection events were further classified as convergent between lines (18 regions), divergent between lines (10 regions), specific to the dam line (6 regions) or specific to the sire line (4 regions). Several biological functions were found to be significantly enriched among the genes included in these regions: body size, body weight and growth regardless of the category, early life survival and calcium metabolism more specifically in the signatures in the dam line and lipid and glycogen metabolism more specifically in the signatures in the sire line. Recent selection on IGF2 was confirmed and several other regions were linked to a single candidate gene (ARHGAP10, BMPR1B, GNA14, KATNA1, LPIN1, PKP1, PTH, SEMA3E or ZC3HAV1, among others). CONCLUSIONS: These results illustrate that sequencing the genome of animals at several recent time points generates considerable insight into the traits, genes and variants under recent selection in a population. This approach could be applied to other livestock populations, e.g. by exploiting the rich biological resources stored in cryobanks.


Assuntos
Genômica , Gado , Animais , Suínos/genética , Sequenciamento Completo do Genoma , Tamanho Corporal , Peso Corporal , Frequência do Gene
3.
Microbiome ; 10(1): 85, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659369

RESUMO

BACKGROUND: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS: We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.


Assuntos
Crassostrea , Microbiota , Animais , Aquicultura , Crassostrea/genética , Sistema Imunitário , Transcriptoma
5.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100421

RESUMO

The relative contribution of selection and neutrality in shaping species genetic diversity is one of the most central and controversial questions in evolutionary theory. Genomic data provide growing evidence that linked selection, i.e. the modification of genetic diversity at neutral sites through linkage with selected sites, might be pervasive over the genome. Several studies proposed that linked selection could be modeled as first approximation by a local reduction (e.g. purifying selection, selective sweeps) or increase (e.g. balancing selection) of effective population size (Ne). At the genome-wide scale, this leads to variations of Ne from one region to another, reflecting the heterogeneity of selective constraints and recombination rates between regions. We investigate here the consequences of such genomic variations of Ne on the genome-wide distribution of coalescence times. The underlying motivation concerns the impact of linked selection on demographic inference, because the distribution of coalescence times is at the heart of several important demographic inference approaches. Using the concept of inverse instantaneous coalescence rate, we demonstrate that in a panmictic population, linked selection always results in a spurious apparent decrease of Ne along time. Balancing selection has a particularly large effect, even when it concerns a very small part of the genome. We also study more general models including genuine population size changes, population structure or transient selection and find that the effect of linked selection can be significantly reduced by that of population structure. The models and conclusions presented here are also relevant to the study of other biological processes generating apparent variations of Ne along the genome.


Assuntos
Genoma , Genômica , Modelos Genéticos , Densidade Demográfica , Seleção Genética
6.
Front Genet ; 12: 723599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925440

RESUMO

Sheep farming is a major source of meat in Morocco and plays a key role in the country's agriculture. This study aims at characterizing the whole-genome diversity and demographic history of the main Moroccan sheep breeds, as well as to identify selection signatures within and between breeds. Whole genome data from 87 individuals representing the five predominant local breeds were used to estimate their level of neutral genetic diversity and to infer the variation of their effective population size over time. In addition, we used two methods to detect selection signatures: either for detecting selective sweeps within each breed separately or by detecting differentially selected regions by contrasting different breeds. We identified hundreds of genomic regions putatively under selection, which related to several biological terms involved in local adaptation or the expression of zootechnical performances such as Growth, UV protection, Cell maturation or Feeding behavior. The results of this study revealed selection signatures in genes that have an important role in traits of interest and increased our understanding of how genetic diversity is distributed in these local breeds. Thus, Moroccan local sheep breeds exhibit both a high genetic diversity and a large set of adaptive variations, and therefore, represent a valuable genetic resource for the conservation of sheep in the context of climate change.

7.
Heredity (Edinb) ; 126(6): 896-912, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846579

RESUMO

Inferring the demographic history of species is one of the greatest challenges in populations genetics. This history is often represented as a history of size changes, ignoring population structure. Alternatively, when structure is assumed, it is defined a priori as a population tree and not inferred. Here we propose a framework based on the IICR (Inverse Instantaneous Coalescence Rate). The IICR can be estimated for a single diploid individual using the PSMC method of Li and Durbin (2011). For an isolated panmictic population, the IICR matches the population size history, and this is how the PSMC outputs are generally interpreted. However, it is increasingly acknowledged that the IICR is a function of the demographic model and sampling scheme with limited connection to population size changes. Our method fits observed IICR curves of diploid individuals with IICR curves obtained under piecewise stationary symmetrical island models. In our models we assume a fixed number of time periods during which gene flow is constant, but gene flow is allowed to change between time periods. We infer the number of islands, their sizes, the periods at which connectivity changes and the corresponding rates of connectivity. Validation with simulated data showed that the method can accurately recover most of the scenario parameters. Our application to a set of five human PSMCs yielded demographic histories that are in agreement with previous studies using similar methods and with recent research suggesting ancient human structure. They are in contrast with the view of human evolution consisting of one ancestral population branching into three large continental and panmictic populations with varying degrees of connectivity and no population structure within each continent.


Assuntos
Fluxo Gênico , Genética Populacional , Diploide , Humanos , Densidade Demográfica
9.
Front Genet ; 12: 575405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633776

RESUMO

Gene banks, framed within the efforts for conserving animal genetic resources to ensure the adaptability of livestock production systems to population growth, income, and climate change challenges, have emerged as invaluable resources for biodiversity and scientific research. Allele frequency trajectories over the few last generations contain rich information about the selection history of populations, which cannot be obtained from classical selection scan approaches based on present time data only. Here we apply a new statistical approach taking advantage of genomic time series and a state of the art statistic (nSL) based on present time data to disentangle both old and recent signatures of selection in the Asturiana de los Valles cattle breed. This local Spanish originally multipurpose breed native to Asturias has been selected for beef production over the last few generations. With the use of SNP chip and whole-genome sequencing (WGS) data, we detect candidate regions under selection reflecting the effort of breeders to produce economically valuable beef individuals, e.g., by improving carcass and meat traits with genes such as MSTN, FLRT2, CRABP2, ZNF215, RBPMS2, OAZ2, or ZNF609, while maintaining the ability to thrive under a semi-intensive production system, with the selection of immune (GIMAP7, GIMAP4, GIMAP8, and TICAM1) or olfactory receptor (OR2D2, OR2D3, OR10A4, and 0R6A2) genes. This kind of information will allow us to take advantage of the invaluable resources provided by gene bank collections from local less competitive breeds, enabling the livestock industry to exploit the different mechanisms fine-tuned by natural and human-driven selection on different populations to improve productivity.

10.
BMC Biol ; 18(1): 14, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050986

RESUMO

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Assuntos
Coturnix/genética , Genoma , Características de História de Vida , Doenças das Aves Domésticas/genética , Comportamento Social , Animais , Estações do Ano
11.
G3 (Bethesda) ; 9(12): 4073-4086, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31597676

RESUMO

Detecting genomic regions under selection is an important objective of population genetics. Typical analyses for this goal are based on exploiting genetic diversity patterns in present time data but rapid advances in DNA sequencing have increased the availability of time series genomic data. A common approach to analyze such data is to model the temporal evolution of an allele frequency as a Markov chain. Based on this principle, several methods have been proposed to infer selection intensity. One of their differences lies in how they model the transition probabilities of the Markov chain. Using the Wright-Fisher model is a natural choice but its computational cost is prohibitive for large population sizes so approximations to this model based on parametric distributions have been proposed. Here, we compared the performance of some of these approximations with respect to their power to detect selection and their estimation of the selection coefficient. We developped a new generic Hidden Markov Model likelihood calculator and applied it on genetic time series simulated under various evolutionary scenarios. The Beta with spikes approximation, which combines discrete fixation probabilities with a continuous Beta distribution, was found to perform consistently better than the others. This distribution provides an almost perfect fit to the Wright-Fisher model in terms of selection inference, for a computational cost that does not increase with population size. We further evaluated this model for population sizes not accessible to the Wright-Fisher model and illustrated its performance on a dataset of two divergently selected chicken populations.


Assuntos
Algoritmos , Modelos Genéticos , Seleção Genética , Animais , Calibragem , Galinhas/genética , Simulação por Computador , Haploidia , Concentração de Íons de Hidrogênio , Funções Verossimilhança , Cadeias de Markov , Fatores de Tempo
12.
Mol Ecol Resour ; 19(4): 997-1014, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30945415

RESUMO

The helmeted guinea fowl Numida meleagris belongs to the order Galliformes. Its natural range includes a large part of sub-Saharan Africa, from Senegal to Eritrea and from Chad to South Africa. Archaeozoological and artistic evidence suggest domestication of this species may have occurred about 2,000 years BP in Mali and Sudan primarily as a food resource, although villagers also benefit from its capacity to give loud alarm calls in case of danger, of its ability to consume parasites such as ticks and to hunt snakes, thus suggesting its domestication may have resulted from a commensal association process. Today, it is still farmed in Africa, mainly as a traditional village poultry, and is also bred more intensively in other countries, mainly France and Italy. The lack of available molecular genetic markers has limited the genetic studies conducted to date on guinea fowl. We present here a first-generation whole-genome sequence draft assembly used as a reference for a study by a Pool-seq approach of wild and domestic populations from Europe and Africa. We show that the domestic populations share a higher genetic similarity between each other than they do to wild populations living in the same geographical area. Several genomic regions showing selection signatures putatively related to domestication or importation to Europe were detected, containing candidate genes, most notably EDNRB2, possibly explaining losses in plumage coloration phenotypes in domesticated populations.


Assuntos
Domesticação , Evolução Molecular , Galliformes/classificação , Galliformes/genética , Genoma , Seleção Genética , África , Animais , Biologia Computacional , Europa (Continente) , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
13.
Mol Biol Evol ; 36(7): 1565-1579, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785202

RESUMO

Species generally undergo a complex demographic history consisting, in particular, of multiple changes in population size. Genome-wide sequencing data are potentially highly informative for reconstructing this demographic history. A crucial point is to extract the relevant information from these very large data sets. Here, we design an approach for inferring past demographic events from a moderate number of fully sequenced genomes. Our new approach uses Approximate Bayesian Computation, a simulation-based statistical framework that allows 1) identifying the best demographic scenario among several competing scenarios and 2) estimating the best-fitting parameters under the chosen scenario. Approximate Bayesian Computation relies on the computation of summary statistics. Using a cross-validation approach, we show that statistics such as the lengths of haplotypes shared between individuals, or the decay of linkage disequilibrium with distance, can be combined with classical statistics (e.g., heterozygosity and Tajima's D) to accurately infer complex demographic scenarios including bottlenecks and expansion periods. We also demonstrate the importance of simultaneously estimating the genotyping error rate. Applying our method on genome-wide human-sequence databases, we finally show that a model consisting in a bottleneck followed by a Paleolithic and a Neolithic expansion is the most relevant for Eurasian populations.


Assuntos
Genética Populacional/métodos , Genoma Humano , Migração Humana , Modelos Genéticos , Teorema de Bayes , Humanos , Sequenciamento Completo do Genoma
14.
J Math Biol ; 78(1-2): 189-224, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030601

RESUMO

The increasing amount of genomic data currently available is expanding the horizons of population genetics inference. A wide range of methods have been published allowing to detect and date major changes in population size during the history of species. At the same time, there has been an increasing recognition that population structure can generate genetic data similar to those generated under models of population size change. Recently, Mazet et al. (Heredity 116(4):362-371, 2016) introduced the idea that, for any model of population structure, it is always possible to find a panmictic model with a particular function of population size-change having an identical distribution of [Formula: see text] (the time of the first coalescence for a sample of size two). This implies that there is an identifiability problem between a panmictic and a structured model when we base our analysis only on [Formula: see text]. In this paper, based on an analytical study of the rate matrix of the ancestral lineage process, we obtain new theoretical results about the joint distribution of the coalescence times [Formula: see text] for a sample of three haploid genes in a n-island model with constant size. Even if, for any [Formula: see text], it is always possible to find a size-change scenario for a panmictic population such that the marginal distribution of [Formula: see text] is exactly the same as in a n-island model with constant population size, we show that the joint distribution of the coalescence times [Formula: see text] for a sample of three genes contains enough information to distinguish between a panmictic population and a n-island model of constant size.


Assuntos
Genética Populacional , Modelos Genéticos , Animais , Biologia Computacional , Simulação por Computador , Genética Populacional/estatística & dados numéricos , Haploidia , Humanos , Conceitos Matemáticos , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos , Fatores de Tempo
15.
Heredity (Edinb) ; 121(6): 663-678, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293985

RESUMO

In the last years, a wide range of methods allowing to reconstruct past population size changes from genome-wide data have been developed. At the same time, there has been an increasing recognition that population structure can generate genetic data similar to those produced under models of population size change. Recently, Mazet et al. (Heredity 116:362-371, 2016) showed that, for any model of population structure, it is always possible to find a panmictic model with a particular function of population size changes, having exactly the same distribution of T2 (the coalescence time for a sample of size two) as that of the structured model. They called this function IICR (Inverse Instantaneous Coalescence Rate) and showed that it does not necessarily correspond to population size changes under non-panmictic models. Besides, most of the methods used to analyse data under models of population structure tend to arbitrarily fix that structure and to minimise or neglect population size changes. Here, we extend the seminal work of Herbots (PhD thesis, University of London, 1994) on the structured coalescent and propose a new framework, the Non-Stationary Structured Coalescent (NSSC) that incorporates demographic events (changes in gene flow and/or deme sizes) to models of nearly any complexity. We show how to compute the IICR under a wide family of stationary and non-stationary models. As an example we address the question of human and Neanderthal evolution and discuss how the NSSC framework allows to interpret genomic data under this new perspective.


Assuntos
Demografia , Densidade Demográfica , Humanos , Modelos Teóricos
16.
BMC Genomics ; 19(1): 294, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695245

RESUMO

BACKGROUND: The understanding of the biological determinism of meat ultimate pH, which is strongly related to muscle glycogen content, is a key point for the control of muscle integrity and meat quality in poultry. In the present study, we took advantage of a unique model of two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle (PM-pHu) in order to decipher the genetic control of this trait. Two complementary approaches were used: detection of selection signatures generated during the first five generations and genome-wide association study for PM-pHu and Sartorius muscle pHu (SART-pHu) at the sixth generation of selection. RESULTS: Sixty-three genomic regions showed significant signatures of positive selection. Out of the 10 most significant regions (detected by HapFLK or FLK method with a p-value below 1e-6), 4 were detected as soon as the first generation (G1) and were recovered at each of the four following ones (G2-G5). Another four corresponded to a later onset of selection as they were detected only at G5. In total, 33 SNPs, located in 24 QTL regions, were significantly associated with PM-pHu. For SART-pHu, we detected 18 SNPs located in 10 different regions. These results confirmed a polygenic determinism for these traits and highlighted two major QTL: one for PM-pHu on GGA1 (with a Bayes Factor (BF) of 300) and one for SART-pHu on GGA4 (with a BF of 257). Although selection signatures were enriched in QTL for PM-pHu, several QTL with strong effect haven't yet responded to selection, suggesting that the divergence between lines might be further increased. CONCLUSIONS: A few regions of major interest with significant selection signatures and/or strong association with PM-pHu or SART-pHu were evidenced for the first time in chicken. Their gene content suggests several candidates associated with diseases of glycogen storage in humans. The impact of these candidate genes on meat quality and muscle integrity should be further investigated in chicken.


Assuntos
Galinhas/genética , Genoma , Carne/análise , Locos de Características Quantitativas , Animais , Teorema de Bayes , Genótipo , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculos Peitorais/química , Músculos Peitorais/metabolismo
17.
BMC Genomics ; 19(1): 202, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554873

RESUMO

BACKGROUND: White striping (WS) is an emerging muscular defect occurring on breast and thigh muscles of broiler chickens. It is characterized by the presence of white striations parallel to the muscle fibers and has significant consequences for meat quality. The etiology of WS remains poorly understood, even if previous studies demonstrated that the defect prevalence is related to broiler growth and muscle development. Moreover, recent studies showed moderate to high heritability values of WS, which emphasized the role of genetics in the expression of the muscle defect. The aim of this study was to identify the first quantitative trait loci (QTLs) for WS as well as breast muscle yield (BMY) and meat quality traits using a genome-wide association study (GWAS). We took advantage of two divergent lines of chickens selected for meat quality through Pectoralis major ultimate pH (pHu) and which exhibit the muscular defect. An expression QTL (eQTL) detection was further performed for some candidate genes, either suggested by GWAS analysis or based on their biological function. RESULTS: Forty-two single nucleotide polymorphisms (SNPs) associated with WS and other meat quality traits were identified. They defined 18 QTL regions located on 13 chromosomes. These results supported a polygenic inheritance of the studied traits and highlighted a few pleiotropic regions. A set of 16 positional and/or functional candidate genes was designed for further eQTL detection. A total of 132 SNPs were associated with molecular phenotypes and defined 21 eQTL regions located on 16 chromosomes. Interestingly, several co-localizations between QTL and eQTL regions were observed which could suggest causative genes and gene networks involved in the variability of meat quality traits and BMY. CONCLUSIONS: The QTL mapping carried out in the current study for WS did not support the existence of a major gene, but rather suggested a polygenic inheritance of the defect and of other studied meat quality traits. We identified several candidate genes involved in muscle metabolism and structure and in muscular dystrophies. The eQTL analyses showed that they were part of molecular networks associated with WS and meat quality phenotypes and suggested a few putative causative genes.


Assuntos
Qualidade dos Alimentos , Glândulas Mamárias Animais/metabolismo , Carne/análise , Doenças Musculares/veterinária , Doenças das Aves Domésticas/genética , Locos de Características Quantitativas , Animais , Composição Corporal , Galinhas , Mapeamento Cromossômico , Feminino , Estudo de Associação Genômica Ampla , Glândulas Mamárias Animais/patologia , Carne/normas , Desenvolvimento Muscular/genética , Doenças Musculares/genética , Doenças Musculares/metabolismo , Músculos Peitorais/metabolismo , Fenótipo , Doenças das Aves Domésticas/metabolismo
18.
Nat Genet ; 50(3): 362-367, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29459679

RESUMO

Stature is affected by many polymorphisms of small effect in humans 1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.


Assuntos
Tamanho Corporal/genética , Bovinos/genética , Sequência Conservada , Estudo de Associação Genômica Ampla , Mamíferos/genética , Animais , Estatura/genética , Bovinos/classificação , Estudos de Associação Genética/veterinária , Variação Genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Estudo de Associação Genômica Ampla/veterinária , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
19.
Heredity (Edinb) ; 120(1): 13-24, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29234166

RESUMO

Several inferential methods using genomic data have been proposed to quantify and date population size changes in the history of species. At the same time an increasing number of studies have shown that population structure can generate spurious signals of population size change. Recently, Mazet et al. (2016) introduced, for a sample size of two, a time-dependent parameter, which they called the IICR (inverse instantaneous coalescence rate). The IICR is equivalent to a population size in panmictic models, but not necessarily in structured models. It is characterised by a temporal trajectory that suggests population size changes, as a function of the sampling scheme, even when the total population size was constant. Here, we extend the work of Mazet et al. (2016) by (i) showing how the IICR can be computed for any demographic model of interest, under the coalescent, (ii) applying this approach to models of population structure (1D and 2D stepping stone, split models, two- and three-island asymmetric gene flow, continent-island models), (iii) stressing the importance of the sampling strategy in generating different histories, (iv) arguing that IICR plots can be seen as summaries of genomic information that can thus be used for model choice or model exclusion (v) applying this approach to the question of admixture between humans and Neanderthals. Altogether these results are potentially important given that the widely used PSMC (pairwise sequentially Markovian coalescent) method of Li and Durbin (2011) estimates the IICR of the sample, not necessarily the history of the populations.


Assuntos
Algoritmos , Variação Genética , Genoma/genética , Modelos Genéticos , Animais , Fluxo Gênico , Genética Populacional , Haploidia , Humanos , Densidade Demográfica , Dinâmica Populacional , Fatores de Tempo
20.
Mol Ecol ; 26(14): 3700-3714, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28394503

RESUMO

Detecting genomic footprints of selection is an important step in the understanding of evolution. Accounting for linkage disequilibrium in genome scans increases detection power, but haplotype-based methods require individual genotypes and are not applicable on pool-sequenced samples. We propose to take advantage of the local score approach to account for linkage disequilibrium in genome scans for selection, cumulating (possibly small) signals from single markers over a genomic segment, to clearly pinpoint a selection signal. Using computer simulations, we demonstrate that this approach detects selection with higher power than several state-of-the-art single-marker, windowing or haplotype-based approaches. We illustrate this on two benchmark data sets including individual genotypes, for which we obtain similar results with the local score and one haplotype-based approach. Finally, we apply the local score approach to Pool-Seq data obtained from a divergent selection experiment on behaviour in quail and obtain precise and biologically coherent selection signals: while competing methods fail to highlight any clear selection signature, our method detects several regions involving genes known to act on social responsiveness or autistic traits. Although we focus here on the detection of positive selection from multiple population data, the local score approach is general and can be applied to other genome scans for selection or other genomewide analyses such as GWAS.


Assuntos
Genótipo , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Seleção Genética , Animais , Simulação por Computador , Polimorfismo de Nucleotídeo Único , Codorniz/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...