Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 12(1): 423, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28637350

RESUMO

The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

2.
Nanoscale Res Lett ; 12(1): 305, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28449543

RESUMO

This contribution addresses the relationships between the structure and gas transport properties of nanoporous thermostable cyanate ester resins (CERs) derived from polycyclotrimerization of 1,1'-bis(4-cyanatophenyl)ethane in the presence of 30 or 50 wt% of inert high-boiling temperature porogens (i.e., dimethyl- or dibutyl phthalates), followed by their quantitative removal. The nanopores in the films obtained were generated via a chemically induced phase separation route with further porogen extraction from the densely crosslinked CERs. To ensure a total desorption of the porogen moieties from the networks, an additional short-term thermal annealing at 250 °C was performed. The structure and morphology of such nanoporous CER-based films were investigated by FTIR and SEM techniques, respectively. Further, the gas transport properties of CER films were analyzed after the different processing steps, and relationships between the material structure and the main gas transport parameters were established.

3.
Polymers (Basel) ; 9(12)2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-30965946

RESUMO

This work examines the molecular dynamics of carboxylated acrylonitrile-butadiene rubber crosslinked with zinc oxide modified silica particles. ZnO/SiO2 with the wide range of ZnO concentrations were used as both a crosslinking agent and filler. A series of thermal measurements were applied to the characterization of the samples: differential scanning calorimetry, dynamical mechanical thermal analysis, and dielectric relaxation spectroscopy. A complementary experimental technique, which is equilibrium swelling in solvents, confirms the presence of ionic crosslinks, which are created between zinc ions and the functional carboxyl groups of the rubber, within the structure of the vulcanizates. These interactions influenced not only the affinity of the vulcanizates to solvents, but also their dynamic mechanical and dielectric properties. In these investigations, the influence of concentration of ZnO on the surface of the ZnO/SiO2 on the properties of the vulcanizates are described.

4.
Carbohydr Polym ; 146: 282-91, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112876

RESUMO

Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer.


Assuntos
Carbono/metabolismo , Celulose/biossíntese , Meios de Cultura/química , Meios de Cultura/metabolismo , Gluconacetobacter/fisiologia , Microbiologia Industrial , Concentração de Íons de Hidrogênio
5.
Nano Lett ; 15(7): 4311-6, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26010081

RESUMO

Here we report a nanofluidics approach that allows one to discriminate, for the first time, between static and kinetic effects on the crystallization of polymers in 2-dimensional nanoconfinement. Nanofluidics cells designed to monitor in real time, via permittivity measurements, the flow process of polymers into cylindrical nanopores were employed to investigate the crystallization of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) under static and under kinetic confinement conditions. A significant separation between static confinement effects and flow effects in confinement is reported. A characteristic time is deduced, to quantify the impact of flow on the crystallization process of polymers taking place under conditions of 2D geometrical nanoconfinement.

6.
Nanoscale Res Lett ; 9(1): 217, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24872804

RESUMO

The relaxation processes of hybrid organic-inorganic polymer nanosystems (OIS) synthesized by joint polymerization of organic and inorganic components were studied using methods of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and broadband dielectric relaxation spectroscopy (DRS). The organic component was a mixture of two products: high-molecular-weight macrodiisocyanate (MDI) with low reactivity and low-molecular-weight isocyanate-containing modifier poly(isocyanate) (PIC) with high reactivity. Sodium silicate (SS) was used as inorganic component. The structures of the OIS obtained were in the form of hybrids with covalently connected building blocks and interpenetrating networks: weakly cross-linked network MDI/SS and highly cross-linked network PIC/SS. Depending on the MDI/PIC ratio, one of the networks was prevailing and created a continuous structure with domains of second network. PACS: 61.25.hk; 82.35.Lr; 64.70.pj.

7.
Nanoscale Res Lett ; 9(1): 2497, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26089004

RESUMO

In the present work, ion-conductive hybrid organic-inorganic polymers based on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG) and lithium perchlorate (LiClO4) were synthesized. The effect of LiClO4 content on the electrophysical properties of epoxy polymers has been studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The effect of LiClO4 content on the structure has been studied by wide-angle X-ray scattering (WAXS). It was found that LiClO4 impacts on the structure of the synthesized hybrid epoxy polymers, probably, by formation of coordinative complexes {ether oxygen-lithium cations-ether oxygen} as evidenced from a significant increase in their glass transition temperatures with increasing LiClO4 concentration and WAXS studies. The presence of ether oxygen in DEG macromolecules provides a transfer mechanism of the lithium cations with the ether oxygen similar to polyethylene oxide (PEO). Thus, the obtained hybrid polymers have high values of ionic conductivity σ' (approximately 10(-3) S/cm) and permittivity ϵ' (6 × 10(5)) at elevated temperatures (200°Ð¡). On the other hand, DEG has higher heat resistance compared to PEO that makes these systems perspective as solid polymer electrolytes able to operate at high temperature. PACS: 81.07.Pr; 62.23.St; 66.30.hk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...