Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268904

RESUMO

Compared to their predecessors, the next generations of aircrafts will be more electrified, require more electrical power and operate at higher voltage levels to meet strict weight and volume constraints. The combined effect of low-pressure environments, increased voltage levels and compact designs intensifies the risks of premature insulation degradation due to electrical discharge activity. This paper studies the resistance to surface discharges of PTFE (polytetrafluoroethylene) and ETFE (ethylene tetrafluoroethylene), two insulation materials widely used in today's aircraft wiring systems due to their outstanding properties, such as a wide temperature operation range and a high dielectric strength. The study is carried out in a low-pressure chamber, which was pressurized within the pressure range of 10-100 kPa that includes most aircraft applications. There is a compelling need for experimental data to assess the resistance of insulation materials to surface discharges at a very early stage as a function of the environmental pressure. Data on resistance to surface discharges in low-pressure environments for aeronautical applications are lacking, while most standards for insulation systems are based on tests under standard pressure conditions. The results provided in this work can be useful to design wiring systems for future more electric aircrafts, as well as to design fault detection systems for an early detection and identification of faults related to surface discharges. Therefore, the data and analysis included in this paper could be of great interest to design and develop insulation systems for wiring systems and standard assessment methods, as well as to design fault detection strategies for the early detection and identification of surface discharges for future generations of more electric aircrafts.

2.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062454

RESUMO

Unpressurized aircraft circuits facilitate the initiation of electrical discharges in wiring systems, with consequent damage to related insulation materials and safety hazards, that can and have already caused severe incidents and accidents. Specific sensors and solutions must be developed to detect these types of faults at a very incipient stage, before further damage occurs. Electrical discharges in air generate the corona effect, which is characterized by emissions of bluish light, which are found in the ultraviolet (UV) and visible spectra. However, due to sunlight interference, the corona effect is very difficult to detect at the very initial stage, so the use of solar-blind sensors can be a possible solution. This work analyzes the feasibility of using inexpensive non-invasive solar-blind sensors in a range of pressures compatible with aircraft environments to detect the electrical discharges at a very incipient stage. Their behavior and sensitivity compared with other alternatives, i.e., an antenna sensor and a CMOS imaging sensor, is also assessed. Experimental results presented in this paper show that the analyzed solar-blind sensors can be applied for the on-line detection of electrical discharges in unpressurized aircraft environments at the very initial stage, thus facilitating and enabling the application of predictive maintenance strategies. They also offer the possibility to be combined with existing electrical protections to expand their capabilities and improve their sensitivity to detect very early discharges, thus allowing the timely identification of their occurrence.


Assuntos
Aeronaves , Luz Solar , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...