Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Commun ; 15(1): 4517, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806479

RESUMO

Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.

2.
Sci Total Environ ; 921: 171104, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401728

RESUMO

Natural processes and human activities both cause morphological changes in channels. Remote sensing products are often used to assess planform changes, but they tend to overlook vertical changes. However, considering both planform and vertical changes is crucial for a comprehensive evaluation of morphological changes. Using spatiotemporal aerial imagery and topographic data, remote sensing plays a vital role in evaluating channel morphological changes and flood-carrying capacity. This study aimed to investigate the morphological changes of a creek in an urban catchment using very high-resolution remote sensing products. In this study, we developed a new framework for investigating overall channel morphology change by employing very high-resolution aerial imagery and a LiDAR-derived digital elevation model (DEM). By digitizing channel boundaries using ArcGIS Pro 3.0, and analyzing various morphological parameters, erosion, and deposition patterns, we examined the impact of urban expansion and infrastructure development on channel adjustments. Channel adjustments have been performed in the case study catchment (Dry Creek, South Australia, Australia) due to urban expansion and development of infrastructure in the downstream reaches. Our findings revealed a significant southwest shift in the planform of the channel, with a maximum shift of 478 m and an average shift of 217 m since 1998. This alteration resulted in an increase in the sinuosity index reaching 1.2. Over the period from 2018 to 2022, the channel experienced a net deposition depth of 3.4 cm to 3.6 cm in downstream reaches. The annual deposition volume in the downstream reaches was 1963 m3, necessitating regular desilting to prevent channel capacity loss and flooding in the surrounding environment. This study also highlights the incremental growth of riparian vegetation within the channel, which affects surface roughness, channel slope, and carrying capacity. These findings provide a valuable baseline for future investigations into stream channel morphology changes and emphasize the importance of implementing appropriate measures such as desilting and vegetation management to mitigate deposition levels, reduce flood risks, and enhance the overall health and functionality of Dry Creek. The framework used in this study can be applied to other case studies employing reliable and high-resolution remote sensing data products.

3.
J Hazard Mater ; 466: 133559, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301437

RESUMO

Synthetic polymers are widely used in medical devices and implants where biocompatibility and mechanical strength are key enablers of emerging technologies. One concern that has not been widely studied is the potential of their microplastics (MPs) release. Here we studied the levels of MP debris released following 8-week in vitro tests on three typical polyglycolic acid (PGA) based absorbable sutures (PGA 100, PGA 90 and PGA 75) and two nonabsorbable sutures (polypropylene-PP and polyamide-PA) in simulated body fluid. The MP release levels ranked from PGA 100 > > PGA 90 > PGA 75 > > PP ∼ PA. A typical PGA 100 suture released 0.63 ± 0.087 million micro (MPs > 1 µm) and 1.96 ± 0.04 million nano (NPs, 200-1000 nm) plastic particles per centimeter. In contrast, no MPs were released from the nonabsorbable sutures under the same conditions. PGA that was co-blended with 10-25% L-lactide or epsilon-caprolactone resulted in a two orders of magnitude lower level of MP release. These results underscore the need to assess the release of nano- and microplastics from medical polymers while applied in the human body and to evaluate possible risks to human health.


Assuntos
Líquidos Corporais , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Suturas , Ácido Poliglicólico
4.
Environ Sci Technol ; 56(17): 12158-12168, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36006854

RESUMO

Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 µm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93-0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Plásticos/química , Polietileno/química , Polipropilenos/análise , Polipropilenos/química , Análise Espectral Raman , Poluentes Químicos da Água/química
5.
J Hazard Mater ; 425: 127997, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986566

RESUMO

Microplastic (MP) release from household plastic products has become a global concern due to the high recorded levels of microplastic and the direct risk of human exposure. However, the most widely used MP measurement protocol, which involves the use of deionized (DI) water, fails to account for the ions and particles present in real drinking water. In this paper, the influence of typical ions (Ca2+/HCO3-, Fe3+, Cu2+) and particles (Fe2O3 particles) on MP release was systematically investigated by conducting a 100-day study using plastic kettles. Surprisingly, after 40 days, all ions resulted in a greater than 89.0% reduction in MP release while Fe2O3 particles showed no significant effect compared to the DI water control. The MP reduction efficiency ranking is Fe3+ ≈ Cu2+ > Ca2+/HCO3- > > Fe2O3 particles ≈ DI water. Physical and chemical characterization using SEM-EDX, AFM, XPS and Raman spectroscopy confirmed Ca2+/HCO3-, Cu2+ and Fe3+ ions are transformed into passivating films of CaCO3, CuO, and Fe2O3, respectively, which are barriers to MP release. In contrast, there was no film formed when the plastic was exposed to Fe2O3 particles. Studies also confirmed that films with different chemical compositions form naturally in kettles during real life due to the different ions present in local regional water supplies. All films identified in this study can substantially reduce the levels of MP release while withstanding the repeated adverse conditions associated with daily use. This study underscores the potential for regional variations in human MP exposure due to the substantial impact water constituents have on the formation of passivating film formation and the subsequent release of MPs.


Assuntos
Água Potável , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
6.
ACS Appl Mater Interfaces ; 13(50): 60489-60497, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881569

RESUMO

Electrically conductive composite materials are highlighted as a potential tech path toward future flexible devices for wearable health technologies. To be commercially viable, these materials must not only be mechanically soft, highly sensitive to deformation, and report a sustainable signal but also utilize manufacturing methods that facilitate large-scale production. An ideal candidate for these envisioned technologies is the viscous, electromechanically sensitive composite material g-putty. Inks based on g-putty here are shown to transform a commercial polymer foam into a sensitive strain sensing material through a simple, scalable soaking procedure. Foam composites reported here have sensitives as high as ∼20 in terms of compressive strain and ∼0.4 kPa-1 with respect to applied compressive stress; both values being comparable to the parent g-putty material. Through g-putty's self-adhering nature, the foams used acted as an elastic scaffolding that aided in overcoming many of the hysteresis effects associated with g-putty without the need for further encapsulation methods. From this, these composite foams were demonstrated to have a sustainable signal that allowed for effective impact and vital sign sensing.

7.
Nanoscale ; 13(36): 15369-15379, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34498659

RESUMO

Conductive and transparent metallic nanowire networks are regarded as promising alternatives to Indium-Tin-Oxides (ITOs) in emerging flexible next-generation technologies due to their prominent optoelectronic properties and low-cost fabrication. The performance of such systems closely relies on many geometrical, physical, and intrinsic properties of the nanowire materials as well as the device-layout. A comprehensive computational study is essential to model and quantify the device's optical and electrical responses prior to fabrication. Here, we present a computational toolkit that exploits the electro-optical specifications of distinct device-layouts, namely standard random nanowire network and transparent mesh pattern structures. The target materials for transparent conducting electrodes of this study are aluminium, gold, copper, and silver nanowires. We have examined a variety of tunable parameters including network area fraction, length to diameter aspect ratio, and nanowires angular orientations under different device designs. Moreover, the optical extinction efficiency factors of each material are estimated by two approaches: Mie light scattering theory and finite element method (FEM) algorithm implemented in COMSOL®Multiphysics software. We studied various nanowire network structures and calculated their respective figures of merit (optical transmittance versus sheet resistance) from which insights on the design of next-generation transparent conductor devices can be inferred.

8.
J Vis Exp ; (173)2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369927

RESUMO

Microplastics (MPs) are becoming a global concern due to the potential risk to human health. Case studies of plastic products (i.e., plastic single-use cups and kettles) indicate that MP release during daily use can be extremely high. Precisely determining the MP release level is a crucial step to identify and quantify the exposure source and assess/control the corresponding risks stemming from this exposure. Though protocols for measuring MP levels in marine or freshwater has been well developed, the conditions experienced by household plastic products can vary widely. Many plastic products are exposed to frequent high temperatures (up to 100 °C) and are cooled back to room temperature during daily use. It is therefore crucial to develop a sampling protocol that mimics the actual daily-use scenario for each particular product. This study focused on widely used polypropylene-based baby feeding bottles to develop a cost-effective protocol for MP release studies of many plastic products. The protocol developed here enables: 1) prevention of the potential contamination during sampling and detection; 2) realistic implementation of daily-use scenarios and accurate collection of the MPs released from baby feeding bottles based on WHO guidelines; and 3) cost-effective chemical determination and physical topography mapping of MPs released from baby feeding bottles. Based on this protocol, the recovery percentage using standard polystyrene MP (diameter of 2 µm) was 92.4-101.2% while the detected size was around 102.2% of the designed size. The protocol detailed here provides a reliable and cost-effective method for MP sample preparation and detection, which can substantially benefit future studies of MP release from plastic products.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Lactente , Plásticos , Polipropilenos , Poliestirenos , Poluentes Químicos da Água/análise
9.
ACS Appl Nano Mater ; 4(2): 1048-1056, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-34056558

RESUMO

Ge1-x Sn x nanowires incorporating a large amount of Sn would be useful for mobility enhancement in nanoelectronic devices, a definitive transition to a direct bandgap for application in optoelectronic devices and to increase the efficiency of the GeSn-based photonic devices. Here we report the catalytic bottom-up fabrication of Ge1-x Sn x nanowires with very high Sn incorporation (x > 0.3). These nanowires are grown in supercritical toluene under high pressure (21 MPa). The introduction of high pressure in the vapor-liquid-solid (VLS) like growth regime resulted in a substantial increase of Sn incorporation in the nanowires, with a Sn content ranging between 10 and 35 atom %. The incorporation of Sn in the nanowires was found to be inversely related to nanowire diameter; a high Sn content of 35 atom % was achieved in very thin Ge1-x Sn x nanowires with diameters close to 20 nm. Sn was found to be homogeneously distributed throughout the body of the nanowires, without apparent clustering or segregation. The large inclusion of Sn in the nanowires could be attributed to the nanowire growth kinetics and small nanowire diameters, resulting in increased solubility of Sn in Ge at the metastable liquid-solid interface under high pressure. Electrical investigation of the Ge1-x Sn x (x = 0.10) nanowires synthesized by the supercritical fluid approach revealed their potential in nanoelectronics and sensor-based applications.

10.
PeerJ ; 9: e10755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628637

RESUMO

Thick bark has been shown to protect trees from wildfires, but can it protect trees from an ambrosia beetle attack? We addressed this question by examining the distribution of holes of the invasive Kuroshio Shot Hole Borer (KSHB, Euwallacea kuroshio; Coleoptera: Scolytinae) in the bark of Goodding's black willow (Salix gooddingii), one of the KSHB's most-preferred hosts. The study was conducted in the Tijuana River Valley, California, in 2016-17, during the peak of the KSHB infestation there. Using detailed measurements of bark samples cut from 27 infested trees, we tested and found support for two related hypotheses: (1) bark thickness influences KSHB attack densities and attack locations, i.e., the KSHB bores abundantly through thin bark and avoids boring through thick bark; and (2) bark thickness influences KSHB impacts, i.e., the KSHB causes more damage to thinner-barked trees than to thicker-barked trees. Our results indicate that thick bark protects trees because it limits the density of KSHB entry points and thereby limits internal structural damage to low, survivable levels. This is the first study to identify bark thickness as a factor that influences the density of KSHB-or any ambrosia beetle-in its host tree, and the first to link bark thickness to rates of host tree mortality.

11.
Int J Biometeorol ; 65(7): 1101-1117, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33604740

RESUMO

There is an increasing demand for cooling cities because of its importance on human health and the quality of life in outdoor urban spaces. However, the development of methods in improving outdoor thermal comfort and zoning cities based on outdoor thermal comfort is still challenging. In this work, we propose a new approach to cities zoning from the lens of outdoor thermal comfort in the arid climate of the city of Mashhad, Iran, and investigate the impacts of urban form characteristics on pedestrian thermal comfort. The effects of complex urban form parameters including height to width (H/W) ratio, canyon orientation, tree canopy cover, and building surface materials on the thermal comfort of pedestrians were studied in the arid climate of Mashhad. Microclimate simulation and analysis is conducted in ENVI-met software, and ArcMap is used to calculate Mashhad urban heat islands. Path analysis in SPSS presents an urban form formulation, which predicts approximate outdoor thermal comfort condition in current and future urban context of Mashhad and other cities with the same climate. We finally demonstrate the use of our research method as an alternative method for all cities: urban heat island (UHI) zoning can be used as a substitute for urban form zonings based on outdoor thermal comfort, especially in large cities where data collection on urban form can be difficult due to limited time and resources.


Assuntos
Temperatura Alta , Sensação Térmica , Cidades , Humanos , Irã (Geográfico) , Ilhas , Projetos Piloto , Qualidade de Vida
12.
Sci Rep ; 10(1): 12178, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699332

RESUMO

Brain-inspired, neuromorphic computing aims to address the growing computational complexity and power consumption in modern von-Neumann architectures. Progress in this area has been hindered due to the lack of hardware elements that can mimic neuronal/synaptic behavior which form the fundamental building blocks for spiking neural networks (SNNs). In this work, we leverage the short/long term memory effects due to the electron trapping events in an atomically thin channel transistor that mimic the exchange of neurotransmitters and emulate a synaptic response. Re-doped (n-type) and Nb-doped (p-type) molybdenum di-sulfide (MoS2) field-effect transistors are examined using pulsed-gate measurements, which identify the time scales of electron trapping/de-trapping. The devices demonstrate promising trends for short/long term plasticity in the order of ms/minutes, respectively. Interestingly, pulse paired facilitation (PPF), which quantifies the short-term plasticity, reveal time constants (τ1 = 27.4 ms, τ2 = 725 ms) that closely match those from a biological synapse. Potentiation and depression measurements describe the ability of the synaptic device to traverse several analog states, where at least 50 conductance values are accessed using consecutive pulses of equal height and width. Finally, we demonstrate devices, which can emulate a well-known learning rule, spike time-dependent plasticity (STDP) which codifies the temporal sequence of pre- and post-synaptic neuronal firing into corresponding synaptic weights. These synaptic devices present significant advantages over iontronic counterparts and are envisioned to create new directions in the development of hardware for neuromorphic computing.


Assuntos
Dissulfetos/química , Molibdênio/química , Nióbio/química , Rênio/química , Transistores Eletrônicos , Biomimética/instrumentação , Biomimética/métodos , Grafite/química , Redes Neurais de Computação , Dióxido de Silício/química
13.
Nanoscale ; 12(20): 11192-11200, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32407430

RESUMO

Graphene-based materials are of increasing interest for their potential use in biomedical applications. However, there is a need to gain a deeper understanding of how graphene modulates biological responses before moving towards clinical application. Innate immune training is a recently described phenomenon whereby cells of the innate immune system are capable of being programmed to generate an increased non-specific response upon subsequent challenge. This has been well established in the case of certain microbes and microbial products. However, little is known about the capacity of particulate materials, such as pristine graphene (pGr), to promote innate immune training. Here we report for the first time that while stimulation with pGr alone does not directly induce cytokine secretion by bone-marrow derived macrophages (BMDMs), it programs them for enhanced secretion of proinflammatory cytokines (IL-6, TNF-α) and a concomitant decrease in production of the regulatory cytokine, IL-10 after Toll-like receptor (TLR) ligand stimulation. This capacity of pGr to program cells for enhanced inflammatory responses could be overcome if the nanomaterial is incorporated in a collagen matrix. Our findings thus demonstrate the potential of graphene to modulate innate immunity over long timescales and have implications for the design and biomedical use of pGr-based materials.


Assuntos
Fulerenos/farmacologia , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Monocinas/imunologia , Receptores Toll-Like/imunologia , Animais , Fulerenos/química , Macrófagos/citologia , Camundongos
14.
Nanoscale Adv ; 2(6): 2514-2524, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133364

RESUMO

The nature and direction of the hysteresis in memristive devices is critical to device operation and performance and the ability to realise their potential in neuromorphic applications. TiO2 is a prototypical memristive device material and is known to show hysteresis loops with both clockwise switching and counter-clockwise switching and in many instances evidence of negative differential resistance (NDR) behaviour. Here we study the electrical response of a device composed of a single nanowire channel Au-Ti/TiO2/Ti-Au both in air and under vacuum and simulate the I-V characteristics in each case using the Schottky barrier and an ohmic-like transport memristive model which capture nonlinear diffusion and migration of ions within the wire. The dynamics of this complex charge conduction phenomenon is obtained by fitting the nonlinear ion-drift equations with the experimental data. Our experimental results support a nonlinear drift of oxygen vacancies acting as shallow donors under vacuum conditions. Simulations show that dopant diffusion under bias creates a depletion region along the channel which results in NDR behaviour, but it is overcome at higher applied bias due to oxygen vacancy generation at the anode. The model allows the motion of the charged dopants to be visualised during device operation in air and under vacuum and predicts the elimination of the NDR under low bias operation, in agreement with experiments.

15.
Nat Food ; 1(11): 746-754, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37128027

RESUMO

Polypropylene-based products are commonly used for food preparation and storage, but their capacity to release microplastics is poorly understood. We investigated the potential exposure of infants to microplastics from consuming formula prepared in polypropylene (PP) infant feeding bottles (IFBs). Here, we show that PP IFBs release microplastics with values as high as 16,200,000 particles per litre. Scenario studies showed that PP IFB sterilization and exposure to high-temperature water significantly increase microplastic release. A 21-d test of PP IFBs showed periodic fluctuations in microplastic release. To estimate the potential global exposure to infants up to 12 months old, we surveyed 48 regions, finding values ranging from 14,600-4,550,000 particles per capita per day, depending on the region. We demonstrate that infant exposure to microplastics is higher than was previously recognized due to the prevalence of PP-based products used in formula preparation and highlight an urgent need to assess whether exposure to microplastics at these levels poses a risk to infant health.

16.
Int J Biometeorol ; 64(2): 231-242, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29916046

RESUMO

Outdoor thermal comfort is influenced by people's climate expectations, perceptions and adaptation capacity. Varied individual response to comfortable or stressful thermal environments results in a deviation between actual outdoor thermal activity choices and those predicted by thermal comfort indices. This paper presents a passive activity observation (PAO) method for estimating contextual limits of outdoor thermal adaptation. The PAO method determines which thermal environment result in statistically meaningful changes may occur in outdoor activity patterns, and it estimates thresholds of outdoor thermal neutrality and limits of thermal adaptation in public space based on activity observation and microclimate field measurement. Applications of the PAO method have been demonstrated in Adelaide, Melbourne and Sydney, where outdoor activities were analysed against outdoor thermal comfort indices between 2013 and 2014. Adjusted apparent temperature (aAT), adaptive predicted mean vote (aPMV), outdoor standard effective temperature (OUT_SET), physiological equivalent temperature (PET) and universal thermal comfort index (UTCI) are calculated from the PAO data. Using the PAO method, the high threshold of outdoor thermal neutrality was observed between 24 °C for optional activities and 34 °C for necessary activities (UTCI scale). Meanwhile, the ultimate limit of thermal adaptation in uncontrolled public spaces is estimated to be between 28 °C for social activities and 48 °C for necessary activities. Normalised results indicate that city-wide high thresholds for outdoor thermal neutrality vary from 25 °C in Melbourne to 26 °C in Sydney and 30 °C in Adelaide. The PAO method is a relatively fast and localised method for measuring limits of outdoor thermal adaptation and effectively informs urban design and policy making in the context of climate change.


Assuntos
Microclima , Sensação Térmica , Aclimatação , Austrália , Cidades , Temperatura
17.
ACS Nano ; 13(12): 14262-14273, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31790198

RESUMO

Two-dimensional (2D) layered semiconductors have recently emerged as attractive building blocks for next-generation low-power nonvolatile memories. However, challenges remain in the controllable fabrication of bipolar resistive switching circuit components from these materials. Here, the experimental realization of lateral memtransistors from monolayer single-crystal molybdenum disulfide (MoS2) utilizing a focused helium ion beam is reported. Site-specific irradiation with the focused probe of a helium ion microscope creates a nanometer-scale defect-rich region, bisecting the MoS2 lattice. The reversible drift of these defects in the applied electric field modulates the resistance of the channel, enabling versatile memristive functionality. The device can reliably retain its resistance ratios and set/reset biases for 1180 switching cycles. Long-term potentiation and depression with sharp habituation are demonstrated. This work establishes the feasibility of ion irradiation for controllable fabrication of 2D memristive devices with promising key performance parameters, such as low power consumption. The applicability of these devices for synaptic emulation may address the demands of future neuromorphic architectures.

18.
Sci Rep ; 9(1): 11550, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399603

RESUMO

Networks of metallic nanowires have the potential to meet the needs of next-generation device technologies that require flexible transparent conductors. At present, there does not exist a first principles model capable of predicting the electro-optical performance of a nanowire network. Here we combine an electrical model derived from fundamental material properties and electrical equations with an optical model based on Mie theory scattering of light by small particles. This approach enables the generation of analogues for any nanowire network and then accurately predicts, without the use of fitting factors, the optical transmittance and sheet resistance of the transparent electrode. Predictions are validated using experimental data from the literature of networks comprised of a wide range of aspect ratios (nanowire length/diameter). The separation of the contributions of the material resistance and the junction resistance allows the effectiveness of post-deposition processing methods to be evaluated and provides a benchmark for the minimum attainable sheet resistance. The predictive power of this model enables a material-by-design approach, whereby suitable systems can be prescribed for targeted technology applications.

19.
Sci Rep ; 9(1): 11738, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409846

RESUMO

Considerable attention has been drawn to the lead halide perovskites (LHPs) because of their outstanding optoelectronic characteristics. LHP nanosheets (NSs) grown from single crystalline lead halide possess advantages in device applications as they provide the possibility for control over morphology, composition, and crystallinity. Here, free-standing lead bromide (PbBr2) single-crystalline NSs with sizes up to one centimeter are synthesized from solution. These NSs can be converted to LHP while maintaining the NS morphology. We demonstrate that these perovskite NSs can be processed directly for fabrication of photodetector and laser arrays on a large scale. This strategy will allow high-yield synthesis of large-size perovskite NSs for functional devices in an integrated photonics platform.

20.
Environ Int ; 131: 104967, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284111

RESUMO

In this study, an in vitro in vivo correlation (IVIVC) between Pb in vitro bioaccessibility (IVBA) and relative bioavailability (RBA) was explored to determine whether the efficacy of Pb immobilization in phosphate amended soils could be predicted using an in vitro approach. Mining/smelting impacted soil from Broken Hill, Australia (582-3536 mg/kg of Pb in the <250 µm soil particle fraction) was amended with Phosphoric Acid (PA), Mono Ammonium Phosphate (MAP) or Triple Super Phosphate (TSP) at Pb:P molar ratios of 1:1-1:5. Pb speciation in pre- and post-treated soil was assessed using X-ray Absorption Spectroscopy (XAS), Pb IVBA was measured using the Solubility Bioaccessibility Research Consortium (SBRC) assay (gastric and intestinal phases), and Pb RBA was determined in mice using blood Pb concentration as the bioavailability endpoint. XAS analysis revealed a 3.75-6.00 fold increase in the weighted % of Pb phosphates in soil containing >1000 mg/kg Pb while treatment effect ratios of 0.89-0.99 (SBRC-G), 0.09-0.71 (SBRC-I) and 0.27-0.80 (RBA) were observed in PA amended soil (Pb:P = 1:5). Although significant (p < 0.05) correlation were obtained between Pb RBA and IVBA (%) determined using SBRC-G (r = 0.64) and SBRC-I (r = 0.67), the strengths of the relationships were weak (r2 = 0.41-0.45). This research highlights the complexities associated with the prediction of Pb RBA in phosphate amended soil.


Assuntos
Chumbo/farmacocinética , Fosfatos/química , Poluentes do Solo/química , Animais , Bioensaio , Disponibilidade Biológica , Chumbo/sangue , Chumbo/química , Camundongos , Mineração , Solo/química , Poluentes do Solo/farmacocinética , Solubilidade , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...