Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 11(1)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29462988

RESUMO

Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent Ki value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency.

2.
Pharmaceuticals (Basel) ; 11(1)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373552

RESUMO

Since the approval of imatinib in 2001, kinase inhibitors have revolutionized cancer therapies. Inside this family of phosphotransferases, casein kinase 2 (CK2) is of great interest and numerous scaffolds have been investigated to design CK2 inhibitors. Recently, functionalized indeno[1,2-b]indoles have been revealed to have high potency against human cancer cell lines such as MCF-7 breast carcinoma and A-427 lung carcinoma. 4-Methoxy-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (THN7), identified as a potent inhibitor of CK2 (IC50 = 71 nM), was selected for an encapsulation study in order to evaluate its antiproliferative activity as THN7-loaded cyclodextrin nanoparticles. Four α-cyclodextrins (α-CDs) were selected to encapsulate THN7 and all experiments indicated that the nanoencapsulation of this CK2 inhibitor in α-CDs was successful. No additional surface-active agent was used during the nanoformulation process. Nanoparticles formed between THN7 and α-C6H13 amphiphilic derivative gave the best results in terms of encapsulation rate (% of associated drug = 35%), with a stability constant (K11) of 298 mol·L-1 and a size of 132 nm. Hemolytic activity of the four α-CDs was determined before the in cellulo evaluation and the α-C6H13 derivative gave the lowest value of hemolytic potency (HC50 = 1.93 mol·L-1). Only the THN7-loaded cyclodextrin nanoparticles showing less toxicity on human erythrocytes (α-C6H13, α-C8H17 and α-C4H9) were tested against A-427 cells. All drug-loaded nanoparticles caused more cytotoxicity against A-427 cells than THN7 alone. Based on these results, the use of amphiphilic CD nanoparticles could be considered as a drug delivery system for indeno[1,2-b]indoles, allowing an optimized bioavailability and offering perspectives for the in vivo development of CK2 inhibitors.

3.
Pharmaceuticals (Basel) ; 10(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067769

RESUMO

Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 105 variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2ß-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2ß at higher concentrations (≥25 µM).

4.
J Pharm Biomed Anal ; 121: 253-260, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786382

RESUMO

Human protein kinase CK2 is an emerging target for the development of novel anti-cancer therapeutics. CK2 is a tetramer composed of two catalytically active α- and/or α'-subunits, bound to a dimer of the regulatory ß-subunit. Inhibitors targeting one of the two isoforms of the catalytically active CK2-subunit (α- and α') are important to study the distinct functions of these isoforms toward different CK2 associated pathologies. The present study for the first time describes the successful Autodisplay of the CK2α'-subunit, the paralogous isoform of CK2α. Expression on the cell surface of E. coli of CK2α' alone and in combination with the regulatory CK2ß-subunit was confirmed by outer membrane isolation and protease accessibility test. Kinase activity of surface displayed CK2 could be detected with a CE-based assay and was found to be 3.06×10(-6) µmol/min for CK2α' alone and 1.02×10(-5) µmol/min when expressed in combination with CK2ß. The comparison of the influence of NaCl on activity of the α'-subunit alone and in combination with the non-catalytically active ß-subunit indicated interaction of both subunits on the cell surface. TMCB (4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)acetic acid), a known CK2 inhibitor described with distinct Ki values of 83 nM and 21 nM for the two different catalytic CK2 subunits α and α' was used for testing. First, inhibition of TMCB toward the purified CK2 holoenzyme CK2α2ß2 was determined and resulted in a Ki value of 10.1 nM. Second, Ki values were determined with the surface displayed isoform CK2 holoenzymes and turned out to be of 31.1 nM for CK2α2ß2 and 19.6 nM for CK2α'2ß2. The inhibition data as obtained represented the distinct affinities of TMCB toward the two isoform holoenzymes. This indicated, that the surface display of CKα and CK2α', in the context of the corresponding holoenzymes, can be used to identify selective compounds. A set of twelve ATP competitive CK2 inhibitors with an indeno[1,2-b]indole scaffold was tested in order to demonstrate suitability for this application.


Assuntos
Bioensaio/métodos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Caseína Quinase II/genética , Catálise , Domínio Catalítico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Drug Des Devel Ther ; 9: 3481-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170632

RESUMO

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Indenos/farmacologia , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Fenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indenos/síntese química , Indenos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Camundongos , Mitoxantrona/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células NIH 3T3 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Transfecção
6.
Pharmaceuticals (Basel) ; 8(2): 279-302, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061121

RESUMO

Due to their system of annulated 6-5-5-6-membered rings, indenoindoles have sparked great interest for the design of ATP-competitive inhibitors of human CK2. In the present study, we prepared twenty-one indeno[1,2-b]indole derivatives, all of which were tested in vitro on human CK2. The indenoindolones 5a and 5b inhibited human CK2 with an IC50 of 0.17 and 0.61 µM, respectively. The indeno[1,2-b]indoloquinone 7a also showed inhibitory activity on CK2 at a submicromolar range (IC50 = 0.43 µM). Additionally, a large number of indenoindole derivatives was evaluated for their cytotoxic activities against the cell lines 3T3, WI-38, HEK293T and MEF.

7.
Microb Cell Fact ; 14: 74, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26036951

RESUMO

BACKGROUND: Human protein kinase CK2 represents a novel therapeutic target for neoplastic diseases. Inhibitors are in need to explore the druggability and the therapeutic options of this enzyme. A bottleneck in the search for new inhibitors is the availability of the target for testing. Therefore an assay was developed to provide easy access to CK2 for discovery of novel inhibitors. RESULTS: Autodisplay was used to present human CK2 on the surface of Escherichia coli. Heterotetrameric CK2 consists of two subunits, α and ß, which were displayed individually on the surface. Co-display of CK2α and CK2ß on the cell surface led to the formation of functional holoenzyme, as demonstrated by NaCl dependency of enzymatic activity, which differs from that of the catalytic subunit CK2α without ß. In addition interaction of CK2α and CK2ß at the cell surface was confirmed by co-immunoprecipitation assays. Surface displayed CK2 holoenzyme enabled an easy IC50 value determination. The IC50 values for the known CK2 inhibitors TBB and Silmitasertib were determined to be 50 and 3.3 nM, respectively. CONCLUSION: Surface-displayed CK2α and CK2ß assembled on the cell surface of E. coli to an active tetrameric holoenzyme. The whole-cell CK2 autodisplay assay as developed is suitable for inhibition studies. Furthermore, it can be used to determine quantitative CK2 inhibition data such as IC50 values. In summary, this is the first report on the functional surface display of a heterotetrameric enzyme on E. coli.


Assuntos
Escherichia coli/metabolismo , Sequência de Aminoácidos , Caseína Quinase II/metabolismo , Descoberta de Drogas , Humanos , Modelos Moleculares , Dados de Sequência Molecular
8.
J Med Chem ; 58(1): 265-77, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25272055

RESUMO

A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Caseína Quinase II/antagonistas & inibidores , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Células MCF-7 , Mitoxantrona/metabolismo , Modelos Químicos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
9.
J Enzyme Inhib Med Chem ; 30(2): 180-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24697298

RESUMO

Four series of carbazole derivatives, including N-substituted-hydroxycarbazoles, oxazinocarbazoles, isoxazolocarbazolequinones, and pyridocarbazolequinones, were studied using diverse biological test methods such as a CE-based assay for CK2 activity measurement, a cytotoxicity assay with IPC-81 cell line, determination of MIC of carbazole derivatives as antibacterial agents, a Plasmodium falciparum susceptibility assay, and an ABCG2-mediated mitoxantrone assay. Two oxazinocarbazoles Ib and Ig showed CK2 inhibition with IC50 = 8.7 and 14.0 µM, respectively. Further chemical syntheses were realized and the 7-isopropyl oxazinocarbazole derivative 2 displayed a stronger activity against CK2 (IC50 = 1.40 µM). Oxazinocarbazoles Ib, Ig, and 2 were then tested against IPC-81 leukemia cells and showed the ability to induce leukemia cell death with IC50 values between 57 and 62 µM. Further investigations were also reported on antibacterial and antiplasmodial activities. No significant inhibitory activity on ABCG2 efflux pump was detected.


Assuntos
Antibacterianos/síntese química , Antimaláricos/síntese química , Antineoplásicos/síntese química , Carbazóis/síntese química , Oxazinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Carbazóis/química , Carbazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazinas/química , Oxazinas/farmacologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
10.
Eur J Med Chem ; 65: 205-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23711832

RESUMO

Herein we describe the synthesis and properties of substituted phenylaminopyrrolo[1,2-a]quinoxaline-carboxylic acid derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 15 compounds was designed and synthesized using convenient and straightforward synthesis protocols. The compounds were tested for inhibition of human protein kinase CK2, which is a potential drug target for many diseases including inflammatory disorders and cancer. New inhibitors with IC50 in the micro- and sub-micromolar range were identified. The most promising compound, the 4-[(3-chlorophenyl)amino]pyrrolo[1,2-a]quinoxaline-3-carboxylic acid 1c inhibited human CK2 with an IC50 of 49 nM. Our findings indicate that pyrrolo[1,2-a]quinoxalines are a promising starting scaffold for further development and optimization of human protein kinase CK2 inhibitors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Quinoxalinas/farmacologia , Caseína Quinase II/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Pirróis/síntese química , Pirróis/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
11.
Int J Pharm ; 441(1-2): 491-8, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23154152

RESUMO

Casein Kinase 2 (CK2) is a ubiquitous kinase protein currently targeted for the treatment of some cancers. Recently, the series of indeno[1,2-b]indoles has revealed great interest as potent and selective CK(2) ATP-competitive inhibitors. Among them, 1-amino-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (CM1) was selected for an encapsulation study in order to improve its biodisponibility. Its complexation was evaluated at the molecular scale, with a series of fluorinated or hydrocarbonated amphiphilic cyclodextrins (CDs). Then the encapsulation of CM1 within CD nanoparticles at the supramolecular level was achieved. Nanoparticles formed between CM1 and hexakis[6-deoxy-6-(3-perfluorohexylpropanethio)-2,3-di-O-methyl]-α-cyclodextrin, a fluorinated amphiphilic α-cyclodextrin, gave the best results in terms of encapsulation rate, stability and drug release. These nanospheres showed an encapsulation efficiency of 65% and a sustained release of the entrapped drug over 3h. Based on these results, encapsulation within fluorinated amphiphilic CD nanoparticles could be considered as a potential drug delivery system for indenoindole-type CK2 inhibitors, allowing better biodisponibility and offering perspectives for tumor targeting development.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Indenos/administração & dosagem , Indóis/administração & dosagem , alfa-Ciclodextrinas/química , Preparações de Ação Retardada , Estabilidade de Medicamentos , Nanopartículas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...