Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(24): 12998-13002, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283248

RESUMO

Platinum(IV) anticancer agents have demonstrated the potential to overcome the limitations associated with the widely used Pt(II) chemotherapeutics, cisplatin, carboplatin, and oxaliplatin. In order to identify therapeutic scenarios where this type of chemotherapy can be applied, an improved understanding on the intracellular reduction of Pt(IV) complexes is needed. Here, we report the synthesis of two fluorescence responsive oxaliplatin(IV)(OxPt) complexes, OxaliRes and OxaliNap. Sodium ascorbate (NaAsc) was shown to reduce each OxPt(IV) complex resulting in increases in their respective fluorescence emission intensities at 585 and 545 nm. The incubation of each OxPt(IV) complex with a colorectal cancer cell line resulted in minimal changes to the respective fluorescence emission intensities. In contrast, the treatment of these cells with NaAsc showed a dose-dependent increase in fluorescence emission intensity. With this knowledge in hand, we tested the reducing potential of tumor hypoxia, where an oxygen-dependent bioreduction was observed for each OxPt(IV) complex with <0.1% O2 providing the greatest fluorescence signal. Clonogenic cell survival assays correlated with these observations demonstrating significant differences in toxicity between hypoxia (<0.1% O2) and normoxia (21% O2). To the best of our knowledge, this is the first report showing carbamate-functionalized OxPt(IV) complexes as potential hypoxia-activated prodrugs.


Assuntos
Antineoplásicos , Neoplasias , Oxalidaceae , Pró-Fármacos , Oxaliplatina/farmacologia , Fluorescência , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Cisplatino , Platina , Pró-Fármacos/farmacologia
2.
Clin Cancer Res ; 29(8): 1631-1642, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689546

RESUMO

PURPOSE: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN: We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS: Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS: These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Linhagem Celular Tumoral
3.
Chem Commun (Camb) ; 58(76): 10699-10702, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069107

RESUMO

Aryl boronate fluorescent probes allow the non-invasive study of dynamic cellular processes involving the reactive species, hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). However, the ability of these probes to differentiate between these two species remains unclear. Here, we report a boronate-functionalised hemicyanine dye (HD-BPin) as a potential strategy to distinguish between H2O2 at 704 nm (red channel) and ONOO- at 460 nm (blue channel) in solution and in cells. This work also highlights the choice of fluorophore before boronate functionalization can dictate the observed selectivity between these two species.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...