Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(43): 13088-96, 2001 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11669647

RESUMO

Yeast pyruvate kinase (YPK) is regulated by intermediates of the glycolytic pathway [e.g., phosphoenolpyruvate (PEP), fructose 1,6-bisphosphate (FBP), and citrate] and by the ATP charge of the cell. Recent kinetic and thermodynamic data with Mn(2+)-activated YPK show that Mn(2+) mediates the allosteric communication between the substrate, PEP, and the allosteric effector, FBP [Mesecar, A., and Nowak, T. (1997) Biochemistry 36, 6792, 6803]. These results indicate that divalent cations modulate multiligand interactions, and hence cooperativity with YPK. The nature of multiligand interactions on YPK was investigated in the presence of the physiological divalent activator Mg(2+). The binding interactions of PEP, Mg(2+), and FBP were monitored by fluorescence spectroscopy. The binding data were subject to thermodynamic linked-function analysis to determine the magnitudes of the multiligand interactions governing the allosteric activation of YPK. The two ligand coupling free energies between PEP and Mg(2+), PEP and FBP, and FBP and Mg(2+) are 0.88, -0.38, and -0.75 kcal/mol, respectively. The two-ligand coupling free energies between PEP and Mn(2+) and FBP and Mn(2+) are more negative than those with Mg(2+) as the cation. This indicates that the interactions between the divalent cation and PEP with YPK are different for Mg(2+) and Mn(2+) and that the interaction is not simply electrostatic in nature, as originally hypothesized. The magnitude of the heterotropic interaction between the metal and FBP is similar with Mg(2+) and Mn(2+). The simultaneous binding of Mg(2+), PEP, and FBP to YPK is favored by 3.21 kcal/mol compared to independent binding. This complex is destabilized by 3.30 kcal/mol relative to the analogous YPK-Mn(2+)-PEP-FDP complex. Interpretation of K(d) values when cooperative binding occurs must be done with care as these are not simple thermodynamic constants. These data demonstrate that the divalent metal, which activates phosphoryl transfer in YPK, plays a key role in modulating the various multiligand interactions that define the overall allosteric properties of the enzyme.


Assuntos
Magnésio/química , Piruvato Quinase/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cátions , Relação Dose-Resposta a Droga , Íons , Cinética , Ligantes , Magnésio/metabolismo , Manganês/metabolismo , Ligação Proteica , Piruvato Quinase/metabolismo , Saccharomyces cerevisiae/enzimologia , Espectrometria de Fluorescência , Termodinâmica , Fatores de Tempo
2.
Biochemistry ; 40(43): 13097-106, 2001 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11669648

RESUMO

The multiligand interactions governing the allosteric response of Mg(2+)-activated yeast pyruvate kinase (YPK) during steady-state turnover were quantitated by kinetic linked-function analysis. The substrate, PEP, the enzyme-bound divalent metal, Mg(2+), and the allosteric effector, FBP, positively influence each other's interaction with the enzyme in the presence of saturating concentrations of the second substrate, MgADP. The presence of Mg(2+) enhances the interaction of PEP and of FBP with YPK by -2.0 and -1.0 kcal/mol, respectively. The simultaneous interaction of PEP, Mg(2+), and FBP with YPK is favored by -4.1 kcal/mol over the sum of their independent binding free energies. The coupling free energies measured for Mg(2+)-activated YPK are weaker than the corresponding coupling free energies measured for Mn(2+)-activated YPK [Mesecar, A., and Nowak, T. (1997) Biochemistry 36, 6792, 6803], but are consistent with results of thermodynamic measurements with the Mg(2+)-YPK complex [Bollenbach, T. J., and Nowak, T. (2001) Biochemistry 36, 13088-13096]. A comparison of ligand binding data measured by kinetic and thermodynamic linked-function analyses reveals that the MgADP complex modulates both the binding of the other three ligands and the two- and three-ligand coupling interactions between the other three ligands. Enzyme-bound Mg(2+) does not influence the homotropic cooperativity in PEP binding to YPK. It is the MgADP complex that induces homotropic cooperativity in PEP binding. It is the enzyme-bound Mn(2+) that induces homotropic binding of PEP with Mn(2+)-activated YPK. These results lend support to the hypothesis that divalent metals modulate the interactions of ligands on YPK and that divalent metals play a role in regulation of the glycolytic pathway.


Assuntos
Magnésio/metabolismo , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Relação Dose-Resposta a Droga , Glicólise , Cinética , L-Lactato Desidrogenase/metabolismo , Ligantes , Manganês , Fosfoenolpiruvato/química , Ligação Proteica , Termodinâmica
3.
Biochemistry ; 38(28): 9137-45, 1999 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-10413488

RESUMO

Site-directed mutagenesis was used to change Lys 240 of yeast pyruvate kinase (Lys 269 in muscle PK) to Met. K240M has an absolute requirement for FBP for catalysis. K240M is 100- and 1000-fold less active than wild-type YPK in the presence of Mn(2+) and Mg(2+), respectively. Steady-state fluorescence titration data suggest that the substrate PEP binds to K240M with the same affinity as it does to wild-type YPK. The rate of phosphoryl transfer in K240M has been decreased >1000-fold compared to wild-type YPK. The detritiation of 3-[(3)H]pyruvate catalyzed by YPK occurs at a rate significantly greater than the spontaneous rate. Detritiation of pyruvate by wild-type YPK occurs as a divalent metal- and FBP-dependent process requiring ATP. There is no detectable detritiation of pyruvate catalyzed by K240M. The solvent deuterium isotope effect on k(cat) is 2.7 +/- 0.2 and 1.6 +/- 0.1 for the wild type and for K240M YPK, respectively. This suggests that the isotope sensitive step in the PK reaction does not involve Lys 240 and that the enolpyruvate intermediate is still protonated by K240M. Isotope trapping was used to characterize enolpyruvate protonation by K240M. While there was enrichment of the methyl protons of pyruvate from labeled solvent formed by catalysis with muscle PK and wild-type YPK, only background levels of tritium were trapped with K240M. In K240M, the proton donor exchanges protons with the solvent at a higher rate relative to turnover than does the proton donor in wild-type YPK. The pH-rate profile of K240M exhibits the loss of a pK(a) value of 8. 8 observed with wild-type YPK. The above data and recent crystal structure data suggest that Lys 240 interacts with the phosphoryl group of phosphoenolpyruvate and helps to stabilize the pentavalent phosphate transition state during phosphoryl transfer. Phosphoryl transfer is highly coupled to proton transfer, or Lys 240 also affects enolate protonation.


Assuntos
Lisina/química , Piruvato Quinase/química , Saccharomyces cerevisiae/enzimologia , Catálise , Divisão Celular/genética , Óxido de Deutério , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Lisina/genética , Lisina/metabolismo , Metionina/genética , Mutagênese Sítio-Dirigida , Prótons , Piruvato Quinase/genética , Piruvato Quinase/isolamento & purificação , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Solventes , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...