Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 23(8): 4257-67, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17346065

RESUMO

The double-gyroid phase of nanoporous silica films formed by evaporation-induced self-assembly (EISA) has been shown to possess facile mass-transport properties and may be used as a robust template for the nanofabrication of metal and semiconductor nanostructures. Recently, we developed a new synthesis of double-gyroid nanoporous silica films where the aging time of the coating solution prior to EISA was the key parameter required to control the interfacial curvature that results upon self-assembly of the film. Here, we use 29Si nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) to investigate the nanoscale structure of the coating solutions used to obtain double-gyroid nanoporous silica films. NMR and SAXS were carried out on the water, ethanol, silica, and poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl (EO17-PO12-C14) surfactant coating solutions as well as similar solutions that excluded either the silica or the surfactant. NMR data reveal that the silica monomers in the coating solution condense very rapidly to form rings and connected ring species. After 1 day of aging, all monomers and dimers have disappeared, and the distribution is dominated by Q2 and Q3 species, where the superscript in Qn describes the number of silicon atoms in the second coordination shell of the central silicon. Over the course of the next 9 days, the Q3 population slowly rises at the expense of the Q2 and Q3t populations. Absolute intensity SAXS measurements reveal that the size of the silica clusters increases steadily during this aging period, reaching an average radius of gyration of 9.0 A after 9 days of aging. Longer aging results in the continued growth of clusters with a mass fractal dimension of 1.8. Absolute intensity SAXS data also reveals that micelles are not present in the coating solution. At 9% volume fraction of surfactant, the coating solution is far above the aqueous critical micellar concentration. However, even a small amount of ethanol inhibits micellization. SAXS data also shows that when surfactant is present the radius of gyration is larger but increases more slowly. This indicates that there are weak associative interactions between the silica clusters and surfactant in solution that reduce the cluster-cluster growth rate. In part II of this work, we use the results discovered here to interpret the effects of aging on interfacial curvature in the nanostructured films that self-assemble from these solutions.

2.
Langmuir ; 23(8): 4268-78, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17346066

RESUMO

The double-gyroid phase of nanoporous silica films has been shown to possess facile mass-transport properties and may be used as a mold to fabricate a variety of highly ordered inverse double-gyroid metal and semiconductor films. This phase exists only over a very small region of the binary phase diagram for most surfactants, and it has been very difficult to synthesize metal oxide films with this structure by evaporation-induced self-assembly (EISA). Here, we show the interplay of the key parameters needed to synthesize these structures reproducibly and show that the interfacial curvature may be systematically controlled. Grazing angle of incidence small-angle X-ray scattering (GISAXS) is used to determine the structure and orientation of nanostructured silica films formed by EISA from dilute silica/(poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl) surfactant solutions. Four different highly ordered film structures are observed by changing only the concentration of the surfactant, the relative humidity during dip-coating, and the aging time of the solution prior to coating. The highly ordered films progress from rhombohedral (Rm) to 2D rectangular (c2m) to double-gyroid (distorted Iad) to lamellar systematically as interfacial curvature decreases. Under all experimental conditions investigated, increasing the aging time of the coating solution was found to decrease the interfacial curvature. In particular, this parameter was critical to being able to synthesize highly ordered, pure-phase double-gyroid films. The key role of the aging time is shown via processing diagrams that map out the interplay between the aging time, composition, and relative humidity. 29Si nuclear magnetic resonance (NMR) spectroscopy and solution-phase small-angle X-ray scattering (SAXS) of the aged coating solutions presented in part I of this series are then used to interpret the effects of aging prior to dip-coating. Specifically, it was found that a predictive model based on volume fractions and the silica cluster stoichiometry obtained from 29Si NMR qualitatively explains the trends observed with composition and aging. However, apart from the effects of relative humidity, a quantitative comparison of the predicted phase with the experimental processing diagram suggests that less-condensed silica clusters are more effective at swelling the EO blocks at early aging times. This enhanced swelling decreases with aging time and results in lower-curvature nanostructures such as the double-gyroid. The decrease in swelling is attributed to the decreased thermodynamic driving force for the more-condensed silica clusters to mix with the EO block of the surfactant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...