Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 382, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013397

RESUMO

The epithelial cell rests of Malassez (ERM) are essential in preventing ankylosis between the alveolar bone and the tooth (dentoalveolar ankylosis). Despite extensive research, the mechanism by which ERM cells suppress ankylosis remains uncertain; perhaps its varied population is to reason. Therefore, in this study, eighteen unique clones of ERM (CRUDE) were isolated using the single-cell limiting dilution and designated as ERM 1-18. qRT-PCR, ELISA, and western blot analyses revealed that ERM-2 and -3 had the highest and lowest amelogenin expression, respectively. Mineralization of human periodontal ligament fibroblasts (HPDLF) was reduced in vitro co-culture with CRUDE ERM, ERM-2, and -3 cells, but recovered when an anti-amelogenin antibody was introduced. Transplanted rat molars grown in ERM-2 cell supernatants produced substantially less bone than those cultured in other cell supernatants; inhibition was rescued when an anti-amelogenin antibody was added to the supernatants. Anti-Osterix antibody staining was used to confirm the development of new bones. In addition, next-generation sequencing (NGS) data were analysed to discover genes related to the distinct roles of CRUDE ERM, ERM-2, and ERM-3. According to this study, amelogenin produced by ERM cells helps to prevent dentoalveolar ankylosis and maintain periodontal ligament (PDL) space, depending on their clonal diversity.


Assuntos
Amelogenina/metabolismo , Separação Celular , Células Epiteliais/metabolismo , Ligamento Periodontal/metabolismo , Anquilose Dental/metabolismo , Amelogenina/genética , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Dente Molar/metabolismo , Dente Molar/patologia , Dente Molar/transplante , Osteogênese , Ligamento Periodontal/patologia , Fenótipo , Ratos Wistar , Sus scrofa , Anquilose Dental/genética , Anquilose Dental/patologia , Anquilose Dental/prevenção & controle
2.
Med Mol Morphol ; 54(4): 346-355, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34324049

RESUMO

The stratified squamous epithelium has a multilayer structure formed by the differentiation of the keratinized epithelium, which covers the skin and oral mucosa. The epithelium plays a central role in regulating the interactions between the immune system and pathogens. The tight junction (TJ) barrier, which is composed of adhesion molecules called claudins (CLDN), is critical for the homeostasis of the skin and oral mucosa. Furthermore, the crucial roles of vitamin D3 (VD3) in the pathogeneses of skin and oral mucosal disease have been suggested. The aim of this in vitro study was to observe the correlations between the integrity of the keratinocyte population and the expression levels of CLDN1 and CLDN4 in gingival epithelial cells, stimulated with VD3. CLDN 1 and 4 expression levels were down and upregulated, respectively, in the cells stimulated with VD3. Additionally, transepithelial electrical resistance (TEER) levels were increased in the stimulated cells when compared to the controls. These findings indicate that CLDN 4 may play a more important role in the TJ barrier than CLDN 1. Hence, the therapeutic effect of VD3 in skin and oral diseases may be regulated by the increase in the expression of CLDN 4.


Assuntos
Colecalciferol , Claudina-4 , Gengiva/citologia , Queratinócitos , Junções Íntimas , Colecalciferol/farmacologia , Claudina-1/genética , Claudina-4/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...