Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 48(1): 19-56, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32392626

RESUMO

BACKGROUND: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. AIMS: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. MATERIALS AND METHODS: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. RESULTS: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. DISCUSSION: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. CONCLUSION: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.


Assuntos
Benchmarking , Física , Radiometria , Simulação por Computador , Método de Monte Carlo
3.
Phys Med Biol ; 65(24): 245018, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33086208

RESUMO

Proton beams are widely used worldwide to treat localized tumours, the lower entrance dose and no exit dose, thus sparing surrounding normal tissues, being the main advantage of this treatment modality compared to conventional photon techniques. Clinical proton beam therapy treatment planning is based on the use of a general relative biological effectiveness (RBE) of 1.1 along the whole beam penetration depth, without taking into account the documented increase in RBE at the end of the depth dose profile, in the Bragg peak and beyond. However, an inaccurate estimation of the RBE can cause both underdose or overdose, in particular it can cause the unfavourable situation of underdosing the tumour and overdosing the normal tissue just beyond the tumour, which limits the treatment success and increases the risk of complications. In view of a more precise dose delivery that takes into account the variation of RBE, experimental microdosimetry offers valuable tools for the quality assurance of LET or RBE-based treatment planning systems. The purpose of this work is to compare the response of two different microdosimetry systems: the mini-TEPC and the MicroPlus-Bridge detector. Microdosimetric spectra were measured across the 62 MeV spread out Bragg peak of CATANA with the mini-TEPC and with the Bridge microdosimeter. The frequency and dose distributions of lineal energy were compared and the different contributions to the spectra were analysed, discussing the effects of different site sizes and chord length distributions. The shape of the lineal energy distributions measured with the two detectors are markedly different, due to the different water-equivalent sizes of the sensitive volumes: 0.85 µm for the TEPC and 17.3 µm for the silicon detector. When the Loncol's biological weighting function is applied to calculate the microdosimetric assessment of the RBE, both detectors lead to results that are consistent with biological survival data for glioma U87 cells. Both the mini-TEPC and the MicroPlus-Bridge detector can be used to assess the RBE variation of a 62 MeV modulated proton beam along its penetration depth. The microdosimetric assessment of the RBE based on the Loncol's weighting function is in good agreement with radiobiological results when the 10% biological uncertainty is taken into account.


Assuntos
Terapia com Prótons , Radiometria , Eficiência Biológica Relativa , Humanos , Silício
4.
Phys Med Biol ; 65(3): 035004, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31842007

RESUMO

Compact silicon on insulator (SOI) microdosimeters have been used to characterise the radiation field of many different hadron therapy beams. SOI devices are particularly attractive in hadron therapy fields due to their spatial resolution being well suited to the sharp dose gradients at the end of the primary beam's range. Due to the small size of SOI's sensitive volumes (SVs), which are usually ∼1-10 [Formula: see text]m thick, the fabrication of these devices can present challenges which are not as common for more conventional thickness silicon devices such as silicon spectroscopy detectors. Microdosimetry is the study of the energy deposition in micrometre sized volumes representing biological sites and is a powerful approach to estimate the biological effect of radiation on the micron-scale level, in a cell. However, cell sizes vary extensively translating in different energy deposition spectra. This work studies SV thicknesses between 1 and 100 [Formula: see text]m using Geant4 and examines the impact of SV dimensions on microdosimetric quantities. The quantities studied were the frequency mean lineal energy, [Formula: see text], and the dose mean lineal energy, [Formula: see text]. Additionally the relative biological effectiveness (RBE), estimated by the microdosimetric kinetic model (MKM), is also investigated. To study the impact of the SV thickness, SOI microdosimeters were irradiated with proton, [Formula: see text] and [Formula: see text] ion beams with ranges of ∼160 mm, with the microdosimeter being set at various positions along the Bragg curve. It was found that [Formula: see text] was influenced the least in proton beams and increased for heavier ion beams. Conversely, [Formula: see text] was impacted by the SV thickness the most in proton beams and [Formula: see text] was the least. Similar to [Formula: see text], protons were impacted the most by the SV thickness when estimating the RBE using the MKM. The cause of these differences was largely due to the different densities of the delta electron track structure for the case of [Formula: see text] and the energy transferred to the medium from the primary beam for [Formula: see text].


Assuntos
Imagens de Fantasmas , Radiometria/instrumentação , Silício/química , Humanos , Cinética , Método de Monte Carlo , Prótons , Radiometria/métodos , Eficiência Biológica Relativa
5.
Phys Med Biol ; 65(4): 045014, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31739291

RESUMO

Microdosimetry is a particularly powerful method to estimate the relative biological effectiveness (RBE) of any mixed radiation field. This is particularly convenient for therapeutic heavy ion therapy (HIT) beams, referring to ions larger than protons, where the RBE of the beam can vary significantly along the Bragg curve. Additionally, due to the sharp dose gradients at the end of the Bragg peak (BP), or spread out BP, to make accurate measurements and estimations of the biological properties of a beam a high spatial resolution is required, less than a millimetre. This requirement makes silicon microdosimetry particularly attractive due to the thicknesses of the sensitive volumes commonly being ∼10 [Formula: see text]m or less. Monte Carlo (MC) codes are widely used to study the complex mixed HIT radiation field as well as to model the response of novel microdosimeter detectors when irradiated with HIT beams. Therefore it is essential to validate MC codes against experimental measurements. This work compares measurements performed with a silicon microdosimeter in mono-energetic [Formula: see text], [Formula: see text] and [Formula: see text] ion beams of therapeutic energies, against simulation results calculated with the Geant4 toolkit. Experimental and simulation results were compared in terms of microdosimetric spectra (dose lineal energy, [Formula: see text]), the dose mean lineal energy, y  D and the RBE10, as estimated by the microdosimetric kinetic model (MKM). Overall Geant4 showed reasonable agreement with experimental measurements. Before the distal edge of the BP, simulation and experiment agreed within ∼10% for y  D and ∼2% for RBE10. Downstream of the BP less agreement was observed between simulation and experiment, particularly for the [Formula: see text] and [Formula: see text] beams. Simulation results downstream of the BP had lower values of y  D and RBE10 compared to the experiment due to a higher contribution from lighter fragments compared to heavier fragments.


Assuntos
Radioterapia com Íons Pesados , Método de Monte Carlo , Radiometria/métodos , Silício , Cinética , Modelos Biológicos , Eficiência Biológica Relativa
6.
Phys Med Biol ; 63(23): 235007, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30468682

RESUMO

With more patients receiving external beam radiation therapy with protons, it becomes increasingly important to refine the clinical understanding of the relative biological effectiveness (RBE) for dose delivered during treatment. Treatment planning systems used in clinics typically implement a constant RBE of 1.1 for proton fields irrespective of their highly heterogeneous linear energy transfer (LET). Quality assurance tools that can measure beam characteristics and quantify or be indicative of biological outcomes become necessary in the transition towards more sophisticated RBE weighted treatment planning and for verification of the Monte Carlo and analytical based models they use. In this study the RBE for the CHO-K1 cell line in a passively delivered clinical proton spread out Bragg peak (SOBP) is determined both in vitro and using a silicon-on-insulator (SOI) microdosimetry method paired with the modified microdosimetric kinetic model. The RBE along the central axis of a SOBP with 2 Gy delivered at the middle of the treatment field was found to vary between 1.11-1.98 and the RBE for 10% cell survival between 1.07-1.58 with a 250 kVp x-ray reference radiation and between 1.19-2.34 and 0.95-1.41, respectively, for a Co60 reference. Good agreement was found between RBE values calculated from the SOI-microdosimetry-MKM approach and in vitro. A strong correlation between proton lineal energy and RBE was observed particularly in the distal end and falloff of the SOBP.


Assuntos
Terapia com Prótons/métodos , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons/efeitos adversos , Eficiência Biológica Relativa
7.
Phys Med Biol ; 63(21): 215007, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30353888

RESUMO

Silicon-on-insulator (SOI) microdosimeters offer a promising method for routine quality assurance (QA) for hadron therapy due to their ease of operation and high spatial resolution. However, one complication which has been shown previously is that the traditional use of the mean chord length, [Formula: see text], calculated using Cauchy's formula, for SOI devices in clinical carbon ion fields is not appropriate due to the strong directionality of the radiation field. In a previous study, we demonstrated that the mean path length, [Formula: see text], which is the mean path of charged particles in the sensitive volume (SV), is a more appropriate method to obtain microdosimetric quantities and biological relevant values, namely the relative biological effectiveness (RBE) by means of the microdosimetric kinetic model. The previous work, which was limited to mono-energetic [Formula: see text] ion beams typical of heavy ion therapy (HIT), is extended here to investigate the [Formula: see text] in a pristine proton beam as well as for spread out Bragg peaks (SOBP) for both proton and carbon ion clinical beams. In addition, the angular dependence of the SOI device for a number of different SV designs is also investigated to quantify the effects which the alignment has on the [Formula: see text]. It is demonstrated that the [Formula: see text] can be accurately estimated along the depth of a pristine or SOBP using the energy deposition spectra for both proton and [Formula: see text] ion beams. This observation allows a quick and accurate estimation of the [Formula: see text] for experimental use.


Assuntos
Radioterapia com Íons Pesados/instrumentação , Radiometria/instrumentação , Silício , Desenho de Equipamento , Humanos , Cinética , Controle de Qualidade , Eficiência Biológica Relativa
8.
Radiat Prot Dosimetry ; 180(1-4): 365-371, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069515

RESUMO

Using the CMRP 'bridge' µ+ probe, microdosimetric measurements were undertaken out-of-field using a therapeutic scanning proton pencil beam and in-field using a 12C ion therapy field. These measurements were undertaken at Mayo Clinic, Rochester, USA and at HIMAC, Chiba, Japan, respectively. For a typical proton field used in the treatment of deep-seated tumors, we observed dose-equivalent values ranging from 0.62 to 0.99 mSv/Gy at locations downstream of the distal edge. Lateral measurements at depths close to the entrance and along the SOBP plateau were found to reach maximum values of 3.1 mSv/Gy and 5.3 mSv/Gy at 10 mm from the field edge, respectively, and decreased to ~0.04 mSv/Gy 120 mm from the field edge. The ability to measure the dose-equivalent with high spatial resolution is particularly relevant to healthy tissue dose calculations in hadron therapy treatments. We have also shown qualitatively and quantitively the effects critical organ motion would have in treatment using microdosimetric spectra. Large differences in spectra and RBE10 were observed for treatments where miscalculations of 12C ion range would result in critical structures being irradiated, showing the importance of motion management.


Assuntos
Radioterapia com Íons Pesados/métodos , Microtecnologia/instrumentação , Imagens de Fantasmas , Terapia com Prótons/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Silício/química , Simulação por Computador , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...