Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 102(9): e209323, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626363

RESUMO

BACKGROUND AND OBJECTIVES: Baseline hyperglycemia is associated with worse outcomes in acute ischemic stroke (AIS), including higher risk of symptomatic intracerebral hemorrhage (sICH) following treatment with thrombolysis. Prospective data are lacking to inform management of post-thrombolysis hyperglycemia. In a prespecified analysis from the Stroke Hyperglycemia Insulin Network Effort (SHINE) trial of hyperglycemic stroke management, we hypothesized that post-thrombolysis hyperglycemia is associated with a higher risk of sICH. METHODS: Hyperglycemic AIS patients <12 hours onset were randomized to intensive insulin (target range 80-130 mg/dL) vs standard sliding scale (80-179 mg/dL) over a 72-hour period, stratified by treatment with thrombolysis. Three board-certified vascular neurologists independently reviewed all sICH events occurring within 7 days, defined by neurologic deterioration of ≥4 points on the NIH Stroke Scale (NIHSS). Associations between blood glucose control and sICH were analyzed using logistic regression accounting for NIHSS, age, systolic blood pressure, onset to thrombolysis time, and endovascular therapy (odds ratios [OR], 95% CI). Additional analysis compared patients in a high-risk group (age older than 60 years and NIHSS ≥8) vs all others. Categorical variables and outcomes were compared using the χ2 test (p < 0.05). RESULTS: Of 1151 SHINE participants, 725 (63%) received thrombolysis (median age 65 years, 46% women, 29% Black, 18% Hispanic). The median NIHSS was 7, baseline blood glucose was 187 (interquartile range 153-247) mg/dL, and 80% were diabetic. Onset to thrombolysis time was 2.2 hours (1.6-2.9). Post-thrombolysis sICH occurred in 3.6% (3.0% intensive vs 4.3% standard glucose control, OR 1.10, 0.60-2.01, p = 0.697). In the first 12 hours, every 10 mg/dL higher glucose increased the odds of sICH (OR 1.08, 1.03-1.14, p = 0.004), and a greater proportion of glucose measures in the normal range (80-130 mg/dL) decreased the odds of sICH (0.89, 0.80-0.99, p = 0.030). These associations were strongest in the high-risk group (age older than 60 years and NIHSS ≥8). DISCUSSION: In this prespecified analysis from the SHINE trial, intensive insulin therapy was not associated with a reduced risk of post-thrombolysis sICH compared with standard sliding scale. However, early post-thrombolysis hyperglycemia was associated with a higher risk of sICH overall, particularly in older patients with more severe strokes. Further prospective research is warranted to address the risk of sICH in hyperglycemic stroke patients undergoing endovascular therapy. TRIAL REGISTRATION INFORMATION: NCT01369069.


Assuntos
Isquemia Encefálica , Hiperglicemia , Insulinas , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Ativador de Plasminogênio Tecidual/efeitos adversos , Glicemia , Fibrinolíticos/efeitos adversos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Resultado do Tratamento , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/complicações , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Insulinas/uso terapêutico
2.
Proc Natl Acad Sci U S A ; 120(24): e2303760120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276426

RESUMO

Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aß) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aß deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aß-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aß clearance in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Modelos Animais de Doenças , Amiloidose/patologia , Camundongos Transgênicos , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Proteínas Adaptadoras de Sinalização CARD/genética
3.
Elife ; 122023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594818

RESUMO

Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Lesões Encefálicas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Meninges/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
4.
Cell ; 185(22): 4135-4152.e22, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36257314

RESUMO

Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/patologia , Fagocitose
5.
Trends Immunol ; 42(6): 480-494, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33941486

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability. Mounting evidence indicates that the immune system is critically involved in TBI pathogenesis, where it is deployed to dispose of neurotoxic material generated from head trauma and to instruct the wound healing process. However, the immune response to brain damage must be carefully held in check as aberrant regulation of immune signaling can lead to deleterious neuroinflammation, brain pathology, and neurological dysfunction. Efficient clearance of neurotoxic material by microglia (the brain's resident phagocytes) and the glymphatic-meningeal lymphatic drainage system are paramount to keeping the immune system in balance following head trauma. In this review, we highlight emerging evidence that defines pivotal roles for microglia and the recently discovered glymphatic-meningeal lymphatic system in TBI pathogenesis.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Sistema Glinfático , Encéfalo , Humanos , Microglia
6.
Nat Commun ; 11(1): 4524, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913280

RESUMO

Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.


Assuntos
Lesões Encefálicas/fisiopatologia , Gliose/fisiopatologia , Sistema Glinfático/fisiologia , Meninges/fisiopatologia , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Gliose/etiologia , Gliose/patologia , Gliose/prevenção & controle , Sistema Glinfático/patologia , Humanos , Masculino , Meninges/patologia , Camundongos , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
7.
Nature ; 580(7805): 647-652, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350463

RESUMO

Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis1-4. We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/patologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/deficiência , Caspase 1/metabolismo , Morte Celular , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Ligação a Fosfato/metabolismo
8.
DNA Cell Biol ; 38(5): 405-409, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30817175

RESUMO

The etiologies of most neurodevelopmental disorders, including autism spectrum disorder (ASD), remain incompletely understood. However, recent epidemiological and experimental data suggest that dysregulated maternal immune activation (MIA) can impede normal brain maturation and promote the development of autism-related phenotypes. Indeed, our studies and work by others demonstrate that offspring born to pregnant animals that were exposed to immune activators develop many of the defining behavioral features of ASD, including abnormalities in social preference, communicative impairments, and repetitive/stereotyped behaviors. Although mounting evidence implicates key roles for hyperactive gestational inflammatory responses in neurodevelopmental disorders, the specific immune pathways that provoke autism-related phenotypes remain poorly described. The microbiome is recognized as a key modulator of immune responses, and emerging studies suggest that microbiota composition is a pivotal regulator of central nervous system function and disease. There has been growing speculation that changes in human microflora diversity contribute at some level to the recent rise in autism incidence. This has largely stemmed from reports of dysbiosis and gastrointestinal inflammation in autistic individuals. Given these clinical findings and the well-described role of the microbiome in calibrating the immune system, our group and others have recently become interested in investigating how changes in microbiota landscape influence neurodevelopmental disorder pathogenesis. In this review, we highlight emerging data describing roles for microbiota in the development of autism-related behavioral abnormalities. These recent findings identify the immune system as a link between gut microbiota and the brain in neurodevelopmental disorders, and suggest that targeting the microbiome and maternal immune responses during gestation may offer strategies to limit autism development in at-risk pregnancies.


Assuntos
Transtorno do Espectro Autista/etiologia , Microbioma Gastrointestinal/imunologia , Sistema Imunitário/imunologia , Transtornos do Neurodesenvolvimento/etiologia , Complicações Infecciosas na Gravidez/etiologia , Animais , Transtorno do Espectro Autista/patologia , Feminino , Humanos , Transtornos do Neurodesenvolvimento/patologia , Gravidez , Complicações Infecciosas na Gravidez/patologia
9.
Cell Stem Cell ; 23(1): 5-6, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979991

RESUMO

Emerging data implicate potential roles for T cells in Parkinson's disease (PD); however, direct evidence for human T cells in PD-associated neurodegeneration has been lacking. In this issue of Cell Stem Cell, Sommer et al. (2018) demonstrate that IL-17-producing T cells from sporadic PD patients promote cell death of patient iPSC-derived midbrain neurons.


Assuntos
Doença de Parkinson , Morte Celular , Diferenciação Celular , Neurônios Dopaminérgicos , Humanos , Mesencéfalo , Células Th17
10.
J Immunol ; 201(3): 845-850, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967099

RESUMO

Recent studies suggest that autism is often associated with dysregulated immune responses and altered microbiota composition. This has led to growing speculation about potential roles for hyperactive immune responses and the microbiome in autism. Yet how microbiome-immune cross-talk contributes to neurodevelopmental disorders currently remains poorly understood. In this study, we report critical roles for prenatal microbiota composition in the development of behavioral abnormalities in a murine maternal immune activation (MIA) model of autism that is driven by the viral mimetic polyinosinic-polycytidylic acid. We show that preconception microbiota transplantation can transfer susceptibility to MIA-associated neurodevelopmental disease and that this is associated with modulation of the maternal immune response. Furthermore, we find that ablation of IL-17a signaling provides protection against the development of neurodevelopmental abnormalities in MIA offspring. Our findings suggest that microbiota landscape can influence MIA-induced neurodevelopmental disease pathogenesis and that this occurs as a result of microflora-associated calibration of gestational IL-17a responses.


Assuntos
Transtorno Autístico/imunologia , Transtorno Autístico/microbiologia , Sistema Imunitário/imunologia , Microbiota/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...