Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; (17): 3262-9, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19421628

RESUMO

Using (51)V magic angle spinning solid-state NMR spectroscopy and density functional theory calculations we have characterized the chemical shift and quadrupolar coupling parameters for two eight-coordinate vanadium complexes, [PPh(4)][V(v)(HIDPA)(2)] and [PPh(4)][V(v)(HIDA)(2)]; HIDPA = 2,2'-(hydroxyimino)dipropionate and HIDA = 2,2'-(hydroxyimino)diacetate. The coordination geometry under examination is the less common non-oxo eight coordinate distorted dodecahedral geometry that has not been previously investigated by solid-state NMR spectroscopy. Both complexes were isolated by oxidizing their reduced forms: [V(iv)(HIDPA)(2)](2-) and [V(iv)(HIDA)(2)](2-). V(iv)(HIDPA)(2)(2-) is also known as amavadin, a vanadium-containing natural product present in the Amanita muscaria mushroom and is responsible for vanadium accumulation in nature. The quadrupolar coupling constants, C(Q), are found to be moderate, 5.0-6.4 MHz while the chemical shift anisotropies are relatively small for vanadium complexes, -420 and -360 ppm. The isotropic chemical shifts in the solid state are -220 and -228 ppm for the two compounds, and near the chemical shifts observed in solution. Presumably this is a consequence of the combined effects of the increased coordination number and the absence of oxo groups. Density functional theory calculations of the electric field gradient parameters are in good agreement with the NMR results while the chemical shift parameters show some deviation from the experimental values. Future work on this unusual coordination geometry and a combined analysis by solid-state NMR and density functional theory should provide a better understanding of the correlations between experimental NMR parameters and the local structure of the vanadium centers.


Assuntos
Alanina/análogos & derivados , Ácidos Hidroxâmicos/química , Espectroscopia de Ressonância Magnética/métodos , Vanádio/química , Agaricales/química , Alanina/química , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Oxirredução
2.
J Inorg Biochem ; 103(4): 575-84, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201030

RESUMO

Three vanadium complexes of chlorodipicolinic acid (4-chloro-2,6-dipicolinic acid) in oxidation states III, IV, and V were prepared and their properties characterized across the oxidation states. In addition, the series of hydroxylamido, methylhydroxylamido, dimethylhydroxylamido, and diethylhydroxylamido complexes were prepared from the chlorodipicolinato dioxovanadium(V) complex. The vanadium(V) compounds were characterized in solution by (51)V and (1)H NMR and in the solid-state by X-ray diffraction and (51)V NMR. Density Functional Theory (DFT) calculations were performed to evaluate the experimental parameters and further describes the electronic structure of the complex. The small structural changes that do occur in bond lengths and angles and partial charges on different atoms are minor compared to the charge features that are responsible for the majority of the electric field gradient tensor. The EPR parameters of the vanadium(IV) complex were characterized and compared to the corresponding dipicolinate complex. The chemical properties of the chlorodipicolinate compounds are discussed and correlated with their insulin-enhancing activity in streptozoticin (STZ) induced diabetic Wistar rats. The effect of the chloro-substitution on lowering diabetic hyperglycemia was evaluated and differences were found depending on the compounds oxidation state similar as was observed for the vanadium III, IV and V dipicolinate complexes (P. Buglyo, D.C. Crans, E.M. Nagy, R.L. Lindo, L. Yang, J.J. Smee, W. Jin, L.-H. Chi, M.E. Godzala III, G.R. Willsky, Inorg. Chem. 44 (2005) 5416-5427). However, a linear correlation of oxidation states with efficacy was not observed, which suggests that the differences in mode of action are not simply an issue of redox equivalents. Importantly, our results contrast the previous observation with the vanadium-picolinate complexes, where the halogen substituents increased the insulin-enhancing properties of the complex (T. Takino, H. Yasui, A. Yoshitake, Y. Hamajima, R. Matsushita, J. Takada, H. Sakurai, J. Biol. Inorg. Chem. 6 (2001) 133-142).


Assuntos
Hipoglicemiantes/química , Insulina/farmacologia , Ácidos Picolínicos/química , Compostos de Vanádio/química , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Espectroscopia de Ressonância de Spin Eletrônica , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Espectroscopia de Ressonância Magnética , Oxirredução , Ácidos Picolínicos/farmacologia , Ratos , Ratos Wistar , Compostos de Vanádio/farmacologia
3.
J Chem Phys ; 128(5): 052317, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18266434

RESUMO

(51)V solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V)O(2)-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V)O(2)-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8 to 8.3 MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600 ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V)O(2)- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the (51)V NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5 A of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V)O(2) series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.


Assuntos
Compostos Organometálicos/química , Ácidos Picolínicos/química , Vanádio , Isótopos , Espectroscopia de Ressonância Magnética/métodos
4.
Inorg Chem ; 46(22): 9285-93, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-17902653

RESUMO

Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ácidos Picolínicos/química , Vanádio/química , Amidas/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...