Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669700

RESUMO

Winner-Take-All (WTA) circuits play an important role in applications where a single element must be selected according to its relevance. They have been successfully applied in neural networks and vision sensors. These applications usually require a large number of inputs for the WTA circuit, especially for vision applications where thousands to millions of pixels may compete to be selected. WTA circuits usually exhibit poor response-time scaling with the number of competitors, and most of the current WTA implementations are designed to work with less than 100 inputs. Another problem related to the large number of inputs is the difficulty to select just one winner, since many competitors may have differences below the WTA resolution. In this paper, a WTA circuit is presented that handles more than four thousand inputs, to our best knowledge the hitherto largest WTA, with response times below the microsecond, and with a guaranty of just a single winner selection. This performance is obtained by the combination of a standard analog WTA circuit and a fast digital single-winner selector with almost no size penalty. This WTA circuit has been successfully employed in the fabrication of a Selective Change-Driven Vision Sensor based on 180 nm CMOS technology. Both simulated and experimental results are presented in the paper, showing that a single pixel event can be selected in just 560 ns, and a multipixel pixel event can be processed in 100 us. Similar results with a conventional approach would require a camera working at more than 1 Mfps for the single-pixel event detection, and 10 kfps for the whole multipixel event to be processed.

2.
Sensors (Basel) ; 16(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834800

RESUMO

Vision-based sensing algorithms are computationally-demanding tasks due to the large amount of data acquired and processed. Visual sensors deliver much information, even if data are redundant, and do not give any additional information. A Selective Change Driven (SCD) sensing system is based on a sensor that delivers, ordered by the magnitude of its change, only those pixels that have changed most since the last read-out. This allows the information stream to be adjusted to the computation capabilities. Following this strategy, a new SCD processing architecture for high-speed motion analysis, based on processing pixels instead of full frames, has been developed and implemented into a Field Programmable Gate-Array (FPGA). The programmable device controls the data stream, delivering a new object distance calculation for every new pixel. The acquisition, processing and delivery of a new object distance takes just 1.7 µ s. Obtaining a similar result using a conventional frame-based camera would require a device working at roughly 500 Kfps, which is far from being practical or even feasible. This system, built with the recently-developed 64 × 64 CMOS SCD sensor, shows the potential of the SCD approach when combined with a hardware processing system.

3.
Sensors (Basel) ; 13(10): 13143-62, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24084110

RESUMO

This article deals with the application of the principles of SCD (Selective Change Driven) vision to 3D laser scanning. Two experimental sets have been implemented: one with a classical CMOS (Complementary Metal-Oxide Semiconductor) sensor, and the other one with a recently developed CMOS SCD sensor for comparative purposes, both using the technique known as Active Triangulation. An SCD sensor only delivers the pixels that have changed most, ordered by the magnitude of their change since their last readout. The 3D scanning method is based on the systematic search through the entire image to detect pixels that exceed a certain threshold, showing the SCD approach to be ideal for this application. Several experiments for both capturing strategies have been performed to try to find the limitations in high speed acquisition/processing. The classical approach is limited by the sequential array acquisition, as predicted by the Nyquist-Shannon sampling theorem, and this has been experimentally demonstrated in the case of a rotating helix. These limitations are overcome by the SCD 3D scanning prototype achieving a significantly higher performance. The aim of this article is to compare both capturing strategies in terms of performance in the time and frequency domains, so they share all the static characteristics including resolution, 3D scanning method, etc., thus yielding the same 3D reconstruction in static scenes.


Assuntos
Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Lasers , Fotometria/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Sensors (Basel) ; 11(11): 11000-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346684

RESUMO

Selective change driven (SCD) Vision is a biologically inspired strategy for acquiring, transmitting and processing images that significantly speeds up image sensing. SCD vision is based on a new CMOS image sensor which delivers, ordered by the absolute magnitude of its change, the pixels that have changed after the last time they were read out. Moreover, the traditional full frame processing hardware and programming methodology has to be changed, as a part of this biomimetic approach, to a new processing paradigm based on pixel processing in a data flow manner, instead of full frame image processing.


Assuntos
Inteligência Artificial , Biomimética , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...