Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116002, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105288

RESUMO

The management and final disposal of agro-industrial wastes are one of the main environmental problems. Due to the presence of silica in some agricultural by-products, it is possible to convert waste into materials with advanced properties. This contribution was aimed to extract and characterize silica materials from various feedstocks including sugarcane bagasse (SCB), corn stalk (CS), and rice husk (RH). Silica yields of 17.91%, 9.39%, and 3.25% were obtained for RH, CS, and SCB. On the other hand, the textural properties show that the siliceous materials exhibited mesoporous structures, with high silica composition in the materials due to the formation of crystalline SiO2 for SCB and CS and amorphous for RH. XPS spectra demonstrate the presence of Si4+ species in RH, and Si3+/Si4+ tetrahedra in SCB and CS.


Assuntos
Resíduos Industriais , Saccharum , Celulose/química , Dióxido de Silício/química , Biomassa , Saccharum/química
2.
Sci Total Environ ; 814: 152691, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34974020

RESUMO

During the COVID-19 pandemic, high consumption of antivirals, antibiotics, antiparasitics, antiprotozoals, and glucocorticoids used in the treatment of this virus has been reported. Conventional treatment systems fail to efficiently remove these contaminants from water, becoming an emerging concern from the environmental field. Therefore, the objective of the present work is to address the current state of the literature on the presence and removal processes of these drugs from water bodies. It was found that the concentration of most of the drugs used in the treatment of COVID-19 increased during the pandemic in water bodies. Before the pandemic, Azithromycin concentrations in surface waters were reported to be in the order of 4.3 ng L-1, and during the pandemic, they increased up to 935 ng L-1. Laboratory scale studies conclude that adsorption and advanced oxidation processes (AOPs) can be effective in the removal of these drugs. Up to more than 80% removal of Azithromycin, Chloroquine, Ivermectin, and Dexamethasone in aqueous solutions have been reported using these processes. Pilot-scale tests achieved 100% removal of Azithromycin from hospital wastewater by adsorption with powdered activated carbon. At full scale, treatment plants supplemented with ozonation and artificial wetlands removed all Favipiravir and Azithromycin, respectively. It should be noted that hybrid technologies can improve removal rates, process kinetics, and treatment cost. Consequently, the development of new materials that can act synergistically in technically and economically sustainable treatments is required.


Assuntos
COVID-19 , Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Humanos , Pandemias , SARS-CoV-2 , Águas Residuárias , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...